HARRISON ROAD LANDFILL, TUCSON, ARIZONA GROUNDWATER MONITORING RESULTS AND REMEDIATION SYSTEM PERFORMANCE REPORT

JULY 2015 THROUGH DECEMBER 2015

March 3, 2016

Prepared by: City of Tucson Environmental Services P.O. Box 27210 Tucson, Arizona 85726-7210

TABLE OF CONTENTS

		Page
EXE	CUTIVE SUMMARY	1
1.0	INTRODUCTION	3
2.0	GROUNDWATER MONITORING	3
	2.1 Groundwater Level Monitoring	4
	2.2 Groundwater Sampling	
	2.2.1 Results and Discussion	
	2.2.2 Quality Assurance/Quality Control Evaluation	6
3.0	GROUNDWATER TREATMENT SYSTEM PERFORMANCE	6
4.0	CORRECTIVE ACTION PLAN MODIFICATION	8
	4.1 Groundwater Treatment System	
	4.2 Performance Monitoring Plan	
	4.3 Reporting Requirements	
5.0	SOIL VAPOR EXTRACTION SYSTEM	9
6.0	METHANE GAS EXTRACTION SYSTEM	10
7.0	SUMMARY	10

TABLES

Table 1	Well Information
Table 2	Water Level Elevations
Table 3	Summary of Selected Groundwater Analytical Results
Table 4	Relative Percent Difference (RPD) Between Original and Duplicate Groundwater
1 4010 4	Samples
Table 5	Groundwater Extraction and Injection Data
Table 6	Summary of Well Extraction and Injection Volumes
Table 7	Mass Removed from Groundwater Extraction Wells
Table 8	Cumulative Mass Removed
Table 9	Carbon Effluent VOC Concentrations
Table 10	Monitoring and Sampling Scheduled, Rebound Testing and Post Closure
Table 11	Groundwater Analytical Constituents, Methods, Preservatives and Holding Times
	FIGURES
	FIGURES
Figure 1	Location Map
Figure 2	Harrison Landfill - Site Map
Figure 3	Groundwater Elevation Map - August 2015
Figure 4	Groundwater Elevation Map - November 2015
Figure 5	Groundwater Hydrographs
Figure 6	Groundwater TCE and PCE Concentrations - November 2015
Figure 7	Non Freon VOC Cumulative Mass Removed
Figure 8	Soil Vapor Extraction and Landfill Gas Extraction Systems
	APPENDICES
Annandiy A	Groundwater Field Sampling Data Shoots and Groundwater Laboratory Analytical
Appendix A	Groundwater Field Sampling Data Sheets and Groundwater Laboratory Analytical Reports
Appendix B	Sample Analyte List and Inorganic Parameter Trend Charts
Appendix C	Harrison Landfill, Approval of Type III Change to Facility Plan, Master Facility
	Plan Approval No. 10019200.04; Place ID Number 1177; License Time Frames
	Number 62380

ACRONYMS

Aquifer Water Quality Standards **AWQS** Arizona Department of Environmental Quality **ADEQ** Arizona Department of Water Resources **ADWR Below Ground Surface** bgs City of Tucson Environmental Services **COT-ES** Dichlorodifluoromethane **DCFA** Feet ft Feet Above Mean Sea Level ft amsl Feet Below Ground Surface ft bgs Gallons Per Minute gpm **Granular Activated Carbon GAC** Landfill Gas LFG Micrograms Per Liter $\mu g/l$ Non-detect ND Poor Water Quality Permit **PWQP Pounds** lbs Quality Assurance/Quality Control QA/QC Soil Vapor Extraction/Air Injection SVE/AI Standard Cubic Feet Per Minute scfm Tetrachloroethene **PCE** Trichloroethene **TCE Tucson Water Quality Laboratory TWQL** Volatile Organic Compounds **VOCs** Water Table Elevation WTE

EXECUTIVE SUMMARY

The City of Tucson owns and formerly operated the closed Harrison Road Landfill located at the intersection of South Harrison Road and East Irvington Road in the southeast portion of the City of Tucson, Arizona. This report provides groundwater quality and soil and groundwater remediation system performance data collected from July 2015 through December 2015 at the Harrison Road Landfill site.

The major findings from the evaluation of this information include:

- Groundwater monitoring was performed at groundwater extraction wells WR-371A, WR-285A and WR-444A and at several Arizona Department of Water Resources (ADWR) required monitoring wells. Groundwater samples were analyzed for Volatile Organic Compounds (VOCs) in accordance with EPA Method 8260.
- There were no exceedances of the Aquifer Water Quality Standards (AWQS) for any of the VOCs analyzed from the extraction wells and monitoring wells during this reporting period.
- There were no inorganic groundwater parameters (general chemistry, anions and metals) that exceeded its respective AWQS, with the exception of lead in monitoring well WR-120A in the November 2015 sampling event, during this reporting period. The elevated lead concentration in well WR-120A was due to suspended solids present in the groundwater sample.
- The groundwater pump and treat system removed and treated approximately 5,976,400 gallons of groundwater during the July 2015 through December 2015 reporting period. The system has extracted and treated 90.51 pounds of total VOCs, including 12.57 pounds of PCE and 4.18 pounds of TCE since operation of the treatment system began in 2001.
- The City of Tucson-Environmental Services Department (COT-ES) will continue to monitor and adjust the landfill gas extraction system as necessary to prevent off-site migration of methane gas, continue the removal of methane gas within the waste mass and maximize the methane concentration in the gas being delivered to the flare.
- On November 10, 2015, the Arizona Department of Environmental Quality (ADEQ) granted approval for a Type III modification to Master Facility Plan Approval No. 10019200.04 for the Harrison Road Landfill. This approval authorized the COT-ES to cease operation of the Groundwater Treatment System and to implement the Proposed Corrective Action Plan Modifications.

- The Groundwater Treatment System was shut down at the end of 2015 and the two year rebound testing program, to be conducted in 2016 and 2017, began in January of 2016.
- Groundwater monitoring and sampling activities will be performed quarterly during the first year and semi-annually during the second year of the rebound testing program, in accordance with the ADEQ November 10, 2015 approval for a Type III plan modification.
- To evaluate the effects of the shut down of the groundwater treatment system on groundwater quality and the effects of natural attenuation, groundwater quality data obtained from sampling activities will be evaluated using the Mann-Kendall trend analysis.
- Groundwater sampling and analysis activities during the two year rebound testing program will be documented and submitted to ADEQ and ADWR in an Annual Groundwater Monitoring Report.

1.0 INTRODUCTION

The City of Tucson - Environmental Services Department (COT-ES) has prepared this report to provide groundwater quality and soil and groundwater remediation system performance data collected from July 2015 through December 2015 at the closed Harrison Road Landfill site. Collection of this environmental monitoring data is required by the Arizona Department of Environmental Quality (ADEQ) Solid Waste Plan Review Unit. The Harrison Road Landfill is located at the intersection of South Harrison Road and East Irvington Road in the southeast portion of the City of Tucson, Arizona, as shown on **Figure 1**. The Harrison Road Landfill is also located within the Tucson Active Management Area, which is a water resource area managed to protect Arizona's finite groundwater resources. This report also satisfies the semi-annual reporting requirements of the Arizona Department of Water Resources (ADWR) for the Harrison Road Landfill Poor Water Quality Permit (PWQP) Number 59-583889.0001.

The groundwater remediation system has been in operation at the Harrison Road Landfill since June of 2001. The remediation system is designed to remove and treat groundwater impacted with volatile organic compounds (VOCs), including tetrachloroethene (PCE) and trichloroethene (TCE). **Figure 2** shows the location of the groundwater monitoring wells and the extraction and injection wells associated with the groundwater remediation system. **Table 1** provides information on the location, type of well (groundwater monitoring or remediation system well) and construction details for the various wells at the site.

Groundwater from extraction wells WR-371A, WR-285A and WR-444A is pumped to the groundwater treatment system located within the Harrison Road Landfill property. The treatment system consists of two 4,500 pound granular activated carbon (GAC) vessels. The treated groundwater is pumped into groundwater injection wells WR-119A, WR-245A and WR-276A, which are located to the north of the landfill footprint. Treated groundwater injection wells WR-120A, R-097A and R-095A were inactive during this reporting period and were used to monitor VOC concentrations in the groundwater.

2.0 GROUNDWATER MONITORING

During the August and November 2015 sampling events, water samples were collected from the following locations:

- Groundwater extraction wells WR-371A, WR-285A and WR-444A
- ADWR required monitoring wells
- Effluent from the two carbon vessels

The extraction well and carbon vessel effluent samples were analyzed for VOCs in accordance with United States Environmental Protection Agency (USEPA) Method 8260. In addition to the monitoring required by the ADWR, the ADEQ Solid Waste Plan Review Unit also requires the COT-ES to conduct groundwater sampling in the November sampling event at monitoring wells

HLM-550, R-119A, WR-121A, WR-122A, WR-244A, WR-286A, WR-321A and WR-443A and off-site well 412P per the approved Corrective Action Plan¹ and Assessment Groundwater Monitoring Program² for the site. Quarterly monitoring was also voluntarily performed by the COT-ES at monitoring wells WR-321A and HLM-550 during the July 2015 through December 2015 monitoring period. Monitoring well 415W, located on the B&R property on the north side of the landfill, has not been sampled since May of 2008. The property containing these wells was purchased by SST Properties LLC, which is located in Utah. This property is currently vacant and the COT-ES has not been able to contact the new owners to obtain permission to sample this well.

2.1 Groundwater Level Monitoring

As required by the PWQP, groundwater level measurements are collected quarterly from monitoring wells and remediation wells at the Harrison Road Landfill site. **Table 2** provides the water level data for the sampling events conducted in August and November of 2015. Groundwater table elevation maps are provided in **Figure 3** and **Figure 4** for the August and November 2015 sampling events respectively. **Figure 5** provides groundwater hydrographs for selected wells. Groundwater level data collected from the extraction wells while the remediation system was operating were used when preparing the water elevation contour maps. Water being conveyed to active injection wells WR-119A, WR-245A, and WR-276A was diverted to an onsite retention basin before water levels were collected from these wells. The groundwater flow direction beneath the Harrison Road Landfill is to the northwest toward the extraction wells. As the hydrographs in **Figure 5** indicate, the water table beneath the site has been declining at a rate of approximately 1.8 feet per year since 1998.

2.2 Groundwater Sampling

The following monitoring wells were sampled during the July 2015 through December 2015 reporting period:

- August 2015: WR-371A, WR-285A, WR-444A, HLM-550 and WR-321A
- November 2015: WR-371A,WR-444A, HLM-550, R-119A, WR-122A, WR-244A, WR-321A, WR-443A, 421P, WR-120A, WR-286A, R-095A and R-097A

² COT: Harrison Rd. Landfill Assessment Groundwater Monitoring Program, February 6, 1996

_

¹ COT: Harrison Rd. Landfill Proposed Corrective Measures, September 4, 1996 (Updated 1997, 1999, 2000, 2001, 2002, 2012)

All of the groundwater samples were submitted to the Tucson Water Quality Laboratory (TWQL) for analysis. **Table 3** provides the results for selected VOC analytes and lead from groundwater samples collected from monitoring wells, inactive injection wells, extraction wells and off-site wells. **Figure 6** shows trends for PCE and TCE in selected wells at the site.

Monitoring well WR-247A is dry and can no longer be sampled. The water table has declined and is below the bottom of the well at 250 feet below ground surface.

2.2.1 Results and Discussion

The laboratory analytical data reports and field sampling data sheets for the August and November 2015 sampling events are provided in **Appendix A**. All of the VOC parameters from the extraction and monitoring wells were reported as below the applicable Aquifer Water Quality Standards (AWQS).

The concentration of PCE in all of the extraction and monitoring wells was below the AWQS of 5 μ g/l during this reporting period. For the quarterly sampling event conducted in November 2015, the three highest PCE concentrations were identified in wells HLM-550 at 3.0 μ g/l, WR-443A at 2.2 μ g/l and R-097A at 1.5 μ g/l. PCE concentrations in monitoring well HLM-550 have shown a slow increasing trend since February of 2014 (**Table 3** and **Figure 6**). PCE concentrations have been below the AWQS in all monitoring wells since May of 2013, which indicates that the groundwater pump and treat system has been successful in remediating PCE concentrations in the groundwater to below the AWQS.

Trend charts for selected inorganic parameters including calcium, sodium, nitrate and sulfate, which are monitored on a semi-annual basis at the site, are provided in **Appendix B**. The complete list of inorganic parameters analyzed as part of the groundwater monitoring program is also included in **Appendix B**. With the exception of lead, no parameter has exceeded its respective AWQS since 1993. The most recent lead exceedance of the AWQS of 50 μ g/l was at well WR-120A in November of 2015 at a concentration of 331 μ g/l. The Sampling Data Form for monitoring well WR-120A for the November 2015 sampling event documents that during the groundwater purging procedure, the purged water was dark to light brown throughout the entire purge event and had an elevated turbidity reading of 164 Nephelometric Turbidity Units. The lead concentrations detected above the AWQS in well WR-120A are likely associated with suspended solids present in the well. Well rehabilitation (swab, brushed, bailed, and purged), and extended purging would decrease the amount of sediment present in the well and would reduce the lead concentrations in the samples.

Monitoring well WR-321A has increasing trends for chloride, nitrate, sulfate and bromide. Nitrate has an AWQS of 10 mg/l and it was detected in well WR-321A at a concentration of 5.9 mg/l in November of 2015. The Harrison Road Landfill is not the source of these compounds in monitoring well WR-321A, as monitoring wells closer to the landfill have lower concentrations

of these compounds. Refer to the trend charts provided in **Appendix B** for additional information concerning these compounds.

2.2.2 Quality Assurance/Quality Control Evaluation

Quality assurance/quality control (QA/QC) analyses for the August and November 2015 groundwater sampling events included the analysis of three duplicate groundwater samples and six trip blank samples. Laboratory analytical results for the QA/QC samples are presented in the laboratory reports in **Appendix A**.

There were no analytes detected in any of the six trip blank samples. All of the duplicate sample analyses were within 30% relative percent difference (RPD) of the original sample analyses, except for the following compounds in well WR-120A in the November 2015 sampling event:

•	Barium	RPD of 92.8%
•	Copper	RPD of 148.7%
•	Iron	RPD of 167.5%
•	Lead	RPD of 189.1%
•	Manganese	RPD of 186.4%
•	Zinc	RPD of 193.2%

Table 4 provides a summary of the RPD between the original and duplicate groundwater samples for the August and November 2015 sampling events.

The difference in contaminant concentrations between the original sample and the duplicate sample is likely due to the presence of sediment, as indicated by colored purge water and relatively high turbidity values. Sediment in the groundwater can influence anomalous results for inorganic parameters.

The laboratory percent recoveries were within laboratory quality assurance objectives for accuracy except for the data qualifiers listed in the case narratives presented in **Appendix A**. All data qualifiers were within acceptable quality and would not likely affect data results.

3.0 GROUNDWATER TREATMENT SYSTEM PERFORMANCE

Monthly performance data for the groundwater treatment system extraction and injection wells for the reporting period from July 1, 2015 through December 31, 2015 is provided on **Table 5** and **Table 6**. From July through December of 2015, 5,976,400 gallons of groundwater were treated at an approximate average extraction rate of 25.2 gallons per minute (gpm). The following three groundwater extraction wells were operated during this reporting period:

• Well WR-371A operated from July 1, 2015 through December 31, 2015

- Well WR-444A operated from July 1, 2015 through December 31, 2015
- Well WR-285A operated for several days in December 2015

Extraction well WR-371A operated approximately 90% of the time and extraction well WR-444A operated approximately 92% of the time during this reporting period. With ADEQ approval³, well WR-285A was shut off in February 2013 due to declining water levels and VOC recovery rates and, as stated above, was operational for several days in December of 2015.

Table 7 provides selected VOC concentrations, the extracted groundwater volume and the cumulative contaminant mass removed from each of the three extraction wells. For the two monitoring events conducted during this reporting period, the average concentration of PCE at the extraction wells was:

- WR-371A. Average PCE Concentration of 0.55 μg/l
- WR-444A. Average PCE Concentration of 1.25 μg/l
- WR-285A. Average PCE Concentration of 0.8 μg/l

TCE was not detected in any of the three extraction wells during this reporting period.

Table 8 provides a summary of the total contaminant mass removed for the groundwater treatment system since 2001. A total of 90.51 pounds of VOCs have been extracted and treated in the groundwater treatment system from 2001 through the end of 2015. The groundwater treatment system has also removed and treated 21.12 pounds of non-freon VOCs, including 12.57 pounds of PCE and 4.18 pounds of TCE from 2001 through the end of 2015. **Figure 7** also provides the cumulative mass of non-freon VOCs removed by the treatment system.

As required by the PWQP, quarterly effluent samples were collected from the GAC tanks, which are plumbed in series. A summary of the GAC effluent sample analytical results is provided in **Table 9**. All effluent VOC concentrations from the GAC tanks were below their respective AWQS.

On May 6, 2015, the COT-ES submitted a Type III application to ADEQ requesting authorization to cease operation of the groundwater treatment system. ADEQ reviewed the May 6, 2015 application and requested additional information and clarification on June 26, 2015 (First Substantive Review). On July 28, 2015, COT-ES provided information responding the First Substantive Review letter to ADEQ. ADEQ reviewed this information and on August 10, 2015 issued a Second Substantive Review letter requesting clarification on the statistical evaluation of

³ ADEQ: (Response letter) Harrison Road Landfill, Semiannual Groundwater Monitoring Results and Semiannual Groundwater Treatment System Performance Report July through December 2012, March 5, 2013

_

the groundwater quality results to determine the potential rebound of the treatment system. On September 8, 2015, COT-ES responded to the ADEQ Second Substantive Review. On September 21, 2015, ADEQ issued a Third Substantive Review letter requesting further clarification on the proposed groundwater quality statistical evaluation method. On November 10, 2015, after evaluating responses to the substantive reviews, ADEQ issued an approval for a Type III modification to the Facility Master Plan Approval No. 10019200.04, authorizing the COT-ES to cease operation of the Groundwater Treatment System and to implement the proposed Corrective Action Plan Modifications. A copy of this approval letter is provided in **Appendix C**.

4.0 CORRECTIVE ACTION PLAN MODIFICATION

Groundwater sampling and analysis and groundwater treatment system performance will be implemented as proposed in the Corrective Action Plan Modification approved by ADEQ on November 10, 2015 (Appendix C). Groundwater monitoring will be conducted for a two year period beginning in January of 2016 to determine if contaminant concentrations increase (i.e. rebound) after shut down of the groundwater treatment system. During the two year rebound testing, groundwater treatment system maintenance and groundwater sampling and analysis and reporting activities will be performed as follows:

4.1 Groundwater Treatment System

- In accordance with the ADEQ approval letter dated November 10, 2015, operation of the Groundwater Treatment System ceased at the end of 2015.
- The groundwater treatment system will in inspected two times per month by a COT-ES remediation system operation and maintenance contractor. The contractor will inspect the extraction and injection wells and the groundwater treatment system to determine if any routine maintenance is required.
- The groundwater treatment system will be operated (i.e. exercised) for a four hour period once every two months by the COT-ES remediation system operation and maintenance contractor. Exercising the treatment system will document the continuing operational status of the system in the event that operation of the treatment system would have to be resumed.

4.2 Performance Monitoring Plan

- Wells used for water injection purposes (WR-119A, WR-245A and WR-276A) will be used only for monitoring purposes.
- Groundwater sampling and analysis will be performed on a quarterly basis during the first year and on a semi-annual basis during the second year of the rebound testing program.

The proposed monitoring well network and the sampling and analysis program are provided on **Table 10**. Groundwater samples will be analyzed for the parameters indicated in **Table 11**.

- Laboratory analytical data obtained from sampling activities will be evaluated using Mann-Kendall trend analysis. This analysis will be used to evaluate the effect of shut down of the groundwater treatment system on groundwater quality at the Harrison Road Landfill and the effect of natural attenuation on the local groundwater quality.
 - ➤ One half of the value of the laboratory detection limit will be used for each non-detect result in the Mann-Kendall evaluation.
 - ➤ If a rising trend is observed and a contaminant concentration exceeds the AWQS in a monitoring well, the COT-ES will notify ADEQ and will conduct a qualitative evaluation of the groundwater quality conditions.
 - ➤ The COT-ES will provide results and recommendations from the groundwater quality evaluation to ADEQ for review within 45 calendar days after notifying ADEQ of the exceedance. If requested by ADEQ, the COT-ES will meet with ADEQ to review the results and recommendations.

4.3 Reporting Requirements

In the Corrective Action Plan Modification dated July 28, 2015, prepared by COT-ES, it was proposed that groundwater monitoring reports be prepared during the two year rebound testing period on an annual basis. This proposed frequency for the preparation and submittal of the groundwater monitoring reports was not specifically approved by ADEQ in the Corrective Action Plan Modification approved on November 10, 2015. In a February 11, 2016 email, ADEQ confirmed their approval for preparation of the groundwater monitoring reports on an annual basis. Groundwater monitoring and sampling activities conducted during the rebound testing will be documented and submitted to ADEQ and ADWR in an *Annual Groundwater Monitoring Report*. The *Annual Groundwater Monitoring Report* will be submitted to ADEQ and ADWR within the first quarter of each succeeding year.

5.0 SOIL VAPOR EXTRACTION SYSTEM

The soil vapor extraction/air injection system (SVE/AI) at the Harrison Road Landfill consists of soil vapor extraction wells SVE-1, SVE-2 and SVE-3 and air injection well SVI-1. Air injection well SVI-1 was abandoned in 2009 due to a broken casing pipe. **Figure 8** shows the locations of the three SVE wells and the abandoned SVI well. The SVE/AI system was designed to remove and treat vapor phase VOCs, primarily PCE and TCE, extracted from soil between the base of the landfill and the top of the groundwater table. The SVE wells extract soil vapor from approximately 90 feet to 250 feet below ground surface. The purpose of this system was to prevent groundwater contamination resulting from the migration of vapors from the base of the

landfill. The system operated from 1999 until 2002 and from 2005 to 2006. The SVE/AI system removed and treated 18,034 pounds of total VOCs from below the landfill, including 1,590 pounds of PCE.

The COT-ES samples the vapor from the extraction wells triennially (once every three years). The most recent vapor sampling event occurred in 2014 and the next scheduled vapor sampling event will occur in 2017. During the July 2015 through December 2015 reporting period, no vapor samples were collected from the SVE system. The COT-ES uses site-specific remedial action objectives (RAO)⁴ to evaluate the soil vapor laboratory results. Soil vapor concentrations greater than the RAOs indicate that the vapor could contaminate groundwater at levels above the respective AWQS. In this event, operation of the SVE system would be resumed to remove soil vapor to prevent groundwater contamination.

6.0 METHANE GAS EXTRACTION SYSTEM

The COT-ES constructed a full-scale methane gas extraction and flare system for the Harrison Road Landfill in 1998. The locations of the extraction wells, laterals and header pipes and the flare compound are shown on **Figure 8**. The system consists of a series of methane extraction wells, designated as Harrison Extraction Well (HEW), which are connected to a 250 standard cubic feet per minute (scfm) blower. A flare is used to burn the methane gas. The system is designed to control off-site migration of methane and the extraction well network is primarily located near the boundaries of the disposed waste. The system has operated since 1998 and has successfully prevented the off-site migration of methane. An added benefit to the landfill gas system is that it removes VOCs directly from the waste mass and prevents the vapor from migrating to the vadose zone and potentially contaminating the groundwater. The system operated 100% of the time during this reporting period. Operating and monitoring data for the landfill gas system are maintained in the COT-ES offices.

7.0 SUMMARY

- There were no exceedances of the AWQS for any of the VOCs analyzed during this reporting period.
- There were no inorganic groundwater parameters (general chemistry, anions and metals) that exceeded its respective AWQS, with the exception of lead in monitoring well WR-120A in November of 2015, during this reporting period. The elevated lead concentration in well WR-120A was due to suspended solids present in the groundwater sample.

⁴ Hydro Geo Chem, *Draft Development of Remedial Closure Criteria for City of Tucson Landfills Undergoing Vadose Zone Remediation*, December 28, 2001

__

- The groundwater pump and treat system removed and treated approximately 5,976,400 gallons of groundwater during the July 2015 through December 2015 reporting period. The system has extracted 90.51 pounds of total VOCs, including 12.57 pounds of PCE and 4.18 pounds of TCE since operation began in 2001.
- The COT-ES will continue to monitor and adjust the landfill gas extraction system as
 necessary to prevent off-site migration of methane gas, continue the removal of VOCs
 within the waste mass and maximize the methane concentration in the gas being delivered
 to the flare.
- On November 10, 2015, ADEQ granted approval for a Type III modification to Master Facility Plan Approval No. 10019200.04 authorizing the COT-ES to cease operation of the Groundwater Treatment System and to implement the Proposed Corrective Action Plan Modifications.
- The Groundwater Treatment System was shut down at the end of 2015 and the two year rebound testing program (2016 through 2017) began in January of 2016.
- During the two year rebound testing program, wells used for water injections purposes (WR-119A, WR-245A, and WR-276A) will be converted to monitoring wells.
- Groundwater monitoring and sampling activities will be performed quarterly during the first year and semi-annually during the second year.
- To evaluate the effects of the shut down of the groundwater treatment system on groundwater quality and the effects of natural attenuation, groundwater quality data obtained from sampling activities will be evaluated using the Mann-Kendall trend analysis.
- Groundwater sampling and analysis activities will be documented and submitted to ADEQ and ADWR in an **Annual Groundwater Monitoring Report.**

TABLES

TABLE 1 Well Information Harrison Road Landfill

WELL_ID	ADWR Well ID#	WELL TYPE	LAND OWNER	Northing	Easting	Measuring Pt. Elevation (amsl)	Measuring Pt. Local	CONCRETE SLAB ELEVATION (amsl)	Diameter (in)	Casing material	Total Well Depth (ft)	Total Boring Depth (ft)	Screened Section (ft)	Comments
HLM-550	55-220573	GW Monitoring	COT	429039.57	1045664.24	2725.04	TOST	2725.94	6	Sch. 80 PVC	305	310	215-305	
R-095A	55-583809	GW Injection	COT	426968.90	1047742.28	2771.68	SEAL	2771.04	6	Steel & Sch. 80 PVC	300	310	190-300	Inactive Injection Well
R-096A	55-583810	GW Monitoring	COT	425890.59	1047719.58	2792.43	TOST	2791.49	6	Steel & Sch. 80 PVC	320	330	220-320	
R-097A	55-587885	GW Injection	COT	427381.53	1047289.13	2758.91	TOC	2758.45	6	Steel & Sch. 80 PVC	278	278	137-277	Inactive Injection Well
R-118A	55-598320	GW Monitoring	COT	426381.44	1047463.39	2816.75	TOC	2816.31	6	Steel & Sch. 80 PVC	340	340	180-340	Well Abandoned January 2012
R-119A	55-598321	GW Monitoring	COT	426863.99	1048372.78	2779.32	TOC	2778.82	6	Steel & Sch. 80 PVC	320	320	210-320	
SL-001	55-615942	GW Monitoring	COT	424983.98	1048611.51	2824.51	SEAL	2823.47	16/12	Unknown type Steel	950	950	281-950	
SVE-1*	55-570102	SV Extraction	COT	427290.17	1047803.02	NS	NS	NS	6	Steel & Sch. 80 PVC	200	250	150-200	Well File R-039A
SVE-2*	55-573121	SV Extraction	COT	426199.95	1047018.46	NS	NS	NS	6	Steel & Sch. 80 PVC	240	285	180-240	Well File R-040A
SVE-3*	55-573123	SV Extraction	COT	426199.83	1048436.31	NS	NS	NS	6	Steel & Sch. 80 PVC	230	275	170-230	Well File R-042A
SVI-1*	55-570101	Abandoned	COT	426590.93	1047921.40	NS	NS	NS	6/3	Steel & Sch. 80 PVC	313	315	203-313	Well File R-038A. Abandoned January 2009
VMW-1A*	None	SV Monitoring	COT	427327.89	1047665.30	NS	NS	NS	0.5	PVC	141	165	Various	2 SV Monitoring Probes
VMW-2R*	55-574007	SV Monitoring	COT	426390.46	1047944.55	NS	NS	NS	0.5	Steel & Sch. 80 PVC	200	205	Various	4 SV Monitoring Probes
WR-119A	55-518658	GW Injection	COT	427355.29	1047804.56	2756.88	IJTB	2756.05	6	Sch. 80 Steel	340	345	240-340	
WR-120A	55-518659	GW Injection	COT	427333.55	1046775.52	2770.71	IJTB	2770.09	6	Sch. 80 Steel	370	370	265-365	Inactive Injection Well
WR-121A	55-518660	GW Monitoring	COT	426189.28	1046923.25	2802.19	TOST	2801.57	6	Sch. 80 Steel	380	385	280-380	
WR-122A	55-518603	GW Monitoring	COT	425113.39	1048619.54	2818.27	TOST	2817.49	6	Sch. 80 Steel	385	390	285-385	
WR-244A	55-551803	GW Monitoring	COT	427379.53	1047498.25	2757.70	TOST	2756.75	5	Steel & Sch. 80 PVC	365	370	340-360	
WR-245A	55-551804	GW Injection	COT	427378.38	1047478.04	2757.35	IJTB	2756.18	6	Steel & Sch. 80 PVC	275	340	233-263	
WR-246A	55-551801	GW Monitoring	COT	427099.31	1048743.14	2751.38	TOST	2750.43	6	Steel & Sch. 80 PVC	376	376	356-376	8
WR-247A	55-551802	GW Monitoring	COT	427118.68	1048742.30	2750.94	TOST	2750.14	6	Steel & Sch. 80 PVC	264	264	220-250	Well is Dry
WR-276A	55-561733	GW Injection	ANB SONORA, LLC	427687.58	1047399.45	2755.40	TOST	2754.47	6	Steel & Sch. 80 PVC	287	287	235-285	Inactive Injection Well
WR-285A	55-563006	GW Extraction	ASLD	428321.84	1047101.32	2755.80	SEAL	2755.05	6	Steel & Sch. 80 PVC	300	300	240-300	Inactive Extraction Well
WR-286A	55-563005	GW Monitoring	ASLD	428106.69	1046554.26	2743.35	TOST	2742.35	6	Steel & Sch. 80 PVC	286	300	235-285	
WR-321A	55-565632	GW Monitoring	COT	428579.45	1045889.07	2730.71	TOST	2729.56	5	Steel & Sch. 80 PVC	289	289	230-280	
WR-348A*	55-573122	Abandoned	COT	426379.41	1047949.86	NS	NS	2786.18	6	Steel & Sch. 80 PVC	320	320	235-315	Abandoned December 2008
WR-371A	55-584020	GW Extraction	ASLD	428309.68	1046350.23	2741.09	SEAL	2740.47	8	Steel & Sch. 80 PVC	307	307	234-302	
WR-443A	55-591331	GW Monitoring	COT	427729.69	1046114.33	2748.62	SEAL	2749.93	6	Steel & Sch. 80 PVC	290	305	241-289	
WR-444A	55-591332	GW Extraction	COT	428040.38	1046090.81	2730.92	TOST	2732.18	8	Steel & Sch. 80 PVC	308	320	234-303	

^{* -} Northing and Easting (N&E) from 2005 survey. All others were resurveyed in August 2011 N&E referenced to NAD 83, Arizona State Plane

N&E is measuring point location unless no elevation value present, then location is concrete slab. Elevations referenced to NAVD 88

NS = Not Surveyed

SV = Soil Vapor

GW = Groundwater

ASLD = Arizona State Land Department

COT = City of Tucson

Measuring Pt. Local Descriptions:

IJTB = Top of Injection Tube

SEAL = Top of well seal.

TOC = Top of Casing.

TOST = Top of Sounding Tube.

Table 2 Water Level Elevations Harrison Landfill

August 2015

						Benchmark				
			DTW	Corr	Corr DTW	Elv.	WTE		Collected	
Well ID	Date	Time	(ft)	Factor (ft)	(ft)	(ft. a.m.s.l.)	(ft)	Sounder	by	Remarks
R-095A	08/18/15	821	282.73	-0.91	281.82	2771.04	2489.22	SOL3	KV/GB	Inactive injection well
R-096A	08/18/15	809	302.21	-0.94	301.27	2791.49	2490.22	SOL3	KV/GB	
R-097A	08/18/15	841	272.77	-0.53	272.24	2758.45	2486.21	SOL3	KV/GB	Inactive injection well
R-119A	08/18/15	814	289.11	-0.82	288.29	2778.82	2490.53	SOL3	KV/GB	
WR-119A	08/18/15	835	267.90	-0.73	267.17	2756.05	2488.88	SOL3	KV/GB	Active injection well
WR-120A	08/18/15	740	289.35	-0.75	288.60	2770.09	2481.49	SOL3	KV/GB	Inactive injection well
WR-121A	08/18/15	830	315.98	-0.70	315.28	2801.57	2486.29	SOL3	KV/GB	
WR-122A	08/18/15	803	322.75	-0.68	322.07	2817.49	2495.42	SOL3	KV/GB	
WR-244A	08/18/15	846	273.49	-0.91	272.58	2756.75	2484.17	SOL3	KV/GB	
WR-245A	08/18/15	1045	238.09	-1.10	236.99	2756.18	2519.19	SOL3	KV/GB	Active injection well
WR-246A	08/18/15	748	261.55	-0.91	260.64	2750.43	2489.79	SOL3	KV/GB	
WR-247A	08/18/15	750	DRY	-1.00		2750.14			KV/GB	Dry at 290 ft
WR-276A	08/18/15	902	270.64	-0.93	269.71	2754.47	2484.76	SOL3	KV/GB	Active injection well
WR-285A	08/18/15	1125	278.61	-2.79	275.82	2755.05	2479.23	SOL3	KV/GB	Inactive extraction Well
WR-286A	08/18/15	908	269.13	-0.92	268.21	2742.35	2474.14	SOL3	KV/GB	
WR-321A	08/18/15	928	265.27	-1.07	264.20	2729.56	2465.36	SOL3	KV/GB	
WR-371A	08/18/15	1015	287.30	-1.41	285.89	2740.47	2454.58	SOL3	KV/GB	Extraction Well
WR-443A	08/18/15	935	275.96	1.19	277.15	2749.93	2472.78	SOL3	KV/GB	
WR-444A	08/18/15	947	283.00	1.36	284.36	2732.18	2447.82	SOL3	KV/GB	Extraction Well
HLM-550	08/18/15	920	261.49	0.96	262.45	2725.94	2463.49	SOL3	KV/GB	

November 2015

			127222200			Benchmark				
			DTW	Corr	Corr DTW	Elv.	WTE		Collected	
Well ID	Date	Time	(ft)	Factor (ft)	(ft)	(ft. a.m.s.l.)	(ft)	Sounder	by	Remarks
R-095A	11/16/15	0950	283.20	-0.91	282.29	2771.04	2488.75	SOL2	JM	Inactive injection well
R-096A	11/16/15	0935	303.49	-0.94	302.55	2791.49	2488.94	SOL2	JM	
R-097A	11/16/15	0955	272.98	-0.53	272.45	2758.45	2486.00	SOL1	KM	Inactive injection well
R-119A	11/16/15	0945	290.33	-0.82	289.51	2778.82	2489.31	SOL2	JM	
WR-119A	11/16/15	1020	268.66	-0.73	267.93	2756.05	2488.12	SOL2	JM	Active injection well
WR-120A	11/16/15	1005	290.52	-0.75	289.77	2770.09	2480.32	SOL2	JM	Inactive injection well
WR-121A	11/16/15	0930	316.85	-0.70	316.15	2801.57	2485.42	SOL2	JM	
WR-122A	11/16/15	0920	323.10	-0.68	322.42	2817.49	2495.07	SOL2	JM	
WR-244A	11/16/15	1010	274.91	-0.91	274.00	2756.75	2482.75	SOL2	JM	
WR-245A	11/16/15	1015	239.35	-1.10	238.25	2756.18	2517.93	SOL2	JM	Active injection well
WR-246A	11/16/15	0855	261.58	-0.91	260.67	2750.43	2489.76	SOL3	GB	
WR-247A	11/16/15		Dry	-1.00		2750.14				
WR-276A	11/16/15	1010	270.88	-0.93	269.95	2754.47	2484.52	SOL3	GB	Active injection well
WR-285A	11/16/15	1035	279.09	-2.79	276.30	2755.05	2478.75	SOL3	GB	Inactive extraction well
WR-286A	11/16/15	1025	269.82	-0.92	268.90	2742.35	2473.45	SOL3	GB	
WR-321A	11/16/15	0918	265.98	-1.07	264.91	2729.56	2464.65	SOL3	GB	
WR-371A	11/16/15	0938	285.69	-1.41	284.28	2740.47	2456.19	SOL3	GB	Active extraction Well
WR-443A	11/16/15	0929	276.48	1.19	277.67	2749.93	2472.26	SOL3	GB	
WR-444A	11/16/15	0924	288.00	1.36	289.36	2732.18	2442.82	SOL3	GB	Active extraction Well
HLM-550	11/16/15	0910	261.68	0.96	262.64	2725.94	2463.30	SOL3	GB	

DTW = Depth to Water

Corr. Factor = Correction Factor

WTE = Water Table Elevation

WR-285A was converted to monitoring only in February 2013

ft = feet

ft. a.m.s.l. = feet above mean sea level.

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lead
	AWQS→		70	5	5	5	2	50
412P	11/17/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	05/18/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	05/18/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	11/17/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	05/19/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	05/19/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	11/12/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	05/20/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	02/19/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	11/13/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	08/21/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	05/14/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	02/15/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	11/14/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	05/16/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	02/22/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	11/08/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	08/24/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	05/17/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	11/03/09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	05/18/09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	11/04/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	05/20/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	11/07/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.7
412P	05/17/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	11/09/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	05/24/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
412P	11/16/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.9
412P	05/11/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.2
412P	05/11/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	11/17/04	<0.5	<0.5		<0.5			7000
				<0.5		<0.5	<0.5	<2
412P	11/17/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	05/12/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	11/24/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	05/14/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.1
412P	05/20/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
412P	05/10/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
415W (B&R West)*	05/20/08	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<2
415W (B&R West)*	11/07/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
415W (B&R West)*	05/17/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
415W (B&R West)*	05/17/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
415W (B&R West)*	11/09/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
415W (B&R West)*	05/24/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
415W (B&R West)*	11/16/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
	05/12/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
415W (B&R West)*		<0.5	<0.5	-	<0.5	<0.5		
415W (B&R West)*	05/12/05		20000000	<0.5	1 9/00/1000 1/40 1/40	0000000	<0.5	<2
415W (B&R West)*	11/17/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
415W (B&R West)*	10/12/04	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<2

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lead
	AWQS→		70	5	5	5	2	50
415W (B&R West)*	11/25/03	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<2
415W (B&R West)*	05/14/03	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	<2
415W (B&R West)*	11/25/02	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<2
415W (B&R West)*	05/20/02	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<2
415W (B&R West)*	05/10/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
The well has not been a	ccessible for sam	NAMES AND ASSESSED.						
HLM-550	11/19/15	0.5	<0.5	<0.5	3	0.7	<0.5	3.25
HLM-550	08/19/15	<0.5	<0.5	<0.5	4.4	1.0	<0.5	NA
HLM-550	05/21/15	<0.5	<0.5	<0.5	2.8	0.6	<0.5	4.67
HLM-550	02/10/15	<0.5	<0.5	<0.5	2.2	0.5	<0.5	NA
HLM-550	11/20/14	<0.5	<0.5	<0.5	3.1	0.6	<0.5	1.95
HLM-550	08/19/14	<0.5	<0.5	<0.5	2.8	0.6	<0.5	NA
HLM-550	05/21/14	<0.5	<0.5	<0.5	2.4	0.6	<0.5	14
HLM-550	02/11/14	<0.5	<0.5	<0.5	2	0.5	<0.5	3.4
HLM-550	11/14/13	<0.5	<0.5	<0.5	2.2	<0.5	<0.5	3.4
HLM-550	08/20/13	<0.5	<0.5	<0.5	2.8	0.5	<0.5	NA
HLM-550	05/23/13	<0.5	<0.5	<0.5	2	<0.5	<0.5	3.8
HLM-550	02/20/13	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	NA
HLM-550	02/20/13	<0.5	<0.5	<0.5	2.4	<0.5	<0.5	NA
HLM-550	11/15/12	<0.5	<0.5	<0.5	2.2	<0.5	<0.5	5.9
HLM-550	08/22/12	<0.5	<0.5	<0.5	2	<0.5	<0.5	NA
HLM-550	05/15/12	<0.5	<0.5	<0.5	1.9	<0.5	<0.5	3.7
HLM-550	02/16/12	<0.5	<0.5	<0.5	2.2	<0.5	<0.5	NA
HLM-550	11/17/11	<0.5	<0.5	<0.5	2.4	<0.5	<0.5	3.4
HLM-550	11/17/2011*	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<10
HLM-550	08/23/11	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	NA
HLM-550	06/09/11	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	NA
HLM-550	06/09/11	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	NA
112101-330	00/03/11	10.0	10.0	10.0	1.2	-0.0	0.0	
R-095A	11/18/15	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	14.3
R-095A	05/20/15	<0.5	<0.5	<0.5	1.6	0.6	<0.5	18.1
R-095A (FF)	11/19/14	NA	NA	NA	NA	NA	NA	9.4
R-095A	11/19/14	0.6	<0.5	<0.5	2.3	0.9	<0.5	19.8
R-095A	08/19/14	NA	NA	NA	NA	NA	NA	83
R-095A	05/22/14	0.6	<0.5	<0.5	2.4	0.7	<0.5	120
R-095A	11/14/13	0.7	<0.5	<0.5	3.4	0.9	<0.5	42
R-095A	05/23/13	0.6	<0.5	<0.5	2.3	0.6	<0.5	26
R-095A	11/15/12	0.6	<0.5	<0.5	2.2	0.6	<0.5	17
R-095A	05/17/12	0.9	<0.5	<0.5	2.6	0.7	<0.5	4.9
R-095A	11/17/11	1.4	<0.5	<0.5	4.3	1.3	<0.5	11
R-095A	05/19/11	0.8	<0.5	<0.5	2.4	0.6	<0.5	13
R-095A	08/19/08	0.8	<0.5	<0.5	0.6	<0.5	<0.5	5.7
R-095A	11/18/03	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	6.2
R-095A	05/12/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.3
R-095A	05/12/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.2
R-095A	11/12/02	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	5.6
	-			<0.5		<0.5	<0.5	5.7
R-095A	08/12/02	<0.5	<0.5		0.8			5.6
R-095A	05/14/02 05/14/02	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.6	<0.5 <0.5	<0.5 <0.5	5.6

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lead
	AWQS→	-	70	5	5	5	2	50
R-095A	02/07/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	9.2
R-095A	02/07/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	9.3
R-095A	11/13/01	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	13.0
R-095A	08/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.3
R-095A	05/10/01	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<2
R-096A	11/08/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.1
R-096A	05/25/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
R-096A	11/17/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	18.0
R-096A	05/10/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.6
R-096A	11/16/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.6
R-096A	05/10/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	14.0
R-096A	11/18/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.1
R-096A	05/13/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.7
R-096A	11/14/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.7
R-096A	08/13/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.6
R-096A	08/13/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.1
R-096A	05/16/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	11.0
R-096A	02/06/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	12.0
R-096A	02/06/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	13.0
R-096A	11/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	13.0
R-096A	11/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	14.0
R-096A	08/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	12.0
	05/14/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
R-096A	05/14/01	<0.5	<0.5	~0.5	<0.5	\0.5	V0.5	~2
R-097A	11/19/15	1	<0.5	<0.5	1.5	0.5	<0.5	NA
R-097A	05/26/15	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	NA
R-097A	11/24/14	0.9	<0.5	<0.5	0.7	<0.5	<0.5	<1
R-097A	5/27/14	0.8	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
R-097A	11/14/13	0.8	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
R-097A	11/14/13	0.9	<0.5	<0.5	0.5	<0.5	<0.5	<0.5
			<0.5	<0.5	0.9	<0.5	<0.5	<1
R-097A	5/22/13	0.6	3003303			200,00	N. N. W. W.	-
R-097A	11/14/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1
R-097A	5/16/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1
R-097A	11/16/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
R-097A	5/18/11	0.8	<0.5	<0.5	0.8	<0.5	<0.5	<2
R-097A	11/10/10	1	<0.5	<0.5	2.3	0.9	<0.5	<2
R-097A	05/20/10	1.4	<0.5	<0.5	2.6	1	<0.5	<2
R-097A	11/08/07	1.2	<0.5	<0.5	3	1.4	<0.5	<2
R-097A	05/21/07	1.0	<0.5	<0.5	1.6	0.7	<0.5	<2
R-097A	11/13/06	1.1	<0.5	<0.5	2.3	0.6	<0.5	<2
R-097A	05/31/06	1.6	<0.5	<0.5	2.6	0.6	<0.5	NA
				-				
R-118A	09/14/11	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	NA
R-118A	09/29/03	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<2
ell was abandoned	in January 2012							
R-119A	11/17/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.46
R-119A	05/19/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	13
R-119A	11/18/14	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	2.74

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lea
	$AWQS {\rightarrow}$		70	5	5	5	2	50
R-119A	5/20/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.3
R-119A	11/14/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.3
R-119A	5/22/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<′
R-119A	5/22/13*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<′
R-119A	11/14/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
R-119A	5/16/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
R-119A	5/16/12*	<0.5	<0.5	<2	<0.5	<0.5	<1	<'
R-119A	11/16/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<;
R-119A	05/18/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<;
R-119A	05/18/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
R-119A	11/10/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<;
R-119A	11/10/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<;
R-119A	05/20/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<;
R-119A	05/20/10	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<
R-119A	11/09/09	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<;
R-119A	05/20/09	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	<
R-119A	11/05/08	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<
R-119A	09/29/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-119A	11/15/10	1.4	<0.5	<0.5	4.8	1.1	<0.5	6.
WR-119A	06/02/10	1.1	<0.5	<0.5	3.5	0.9	<0.5	3.
WR-119A	11/05/09	1.2	<0.5	<0.5	3.2	0.7	<0.5	<
WR-119A	11/05/09	1.3	<0.5	<0.5	3.4	0.8	<0.5	2.
WR-119A	05/21/09	1	<0.5	<0.5	3.5	0.8	<0.5	. <
WR-119A	05/21/09	1.1	<0.5	<0.5	3.5	0.8	<0.5	2.
WR-119A	11/06/08	1	<0.5	<0.5	2.1	0.5	<0.5	4.
WR-119A	05/20/08	1	<0.5	<0.5	1.5	<0.5	<0.5	6.
WR-119A	11/07/07	1	<0.5	<0.5	<0.5	<0.5	<0.5	5
WR-119A	05/21/07	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-119A	11/13/06	1.3	<0.5	<0.5	1.3	<0.5	<0.5	5.
WR-119A	05/25/06	1.0	<0.5	<0.5	0.8	<0.5	<0.5	N
WR-119A	11/22/05	1.1	<0.5	<0.5	0.5	<0.5	<0.5	12
WR-119A	11/15/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	16
WR-119A	11/18/03	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-119A	05/13/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-119A	11/13/02	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-119A	08/12/02	2.1	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-119A	08/12/02	2.2	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-119A	05/14/02	2.8	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-119A	02/07/02	2.4	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-119A	11/15/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-119A	11/15/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-119A	08/15/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-119A	05/09/01	1.1	<0.5	<0.5	5.7	1.4	<0.5	3.
WR-119A	05/09/01	1.2	<0.5	<0.5	5.9	1.5	<0.5	3.
WR-119A	02/14/01	0.7	<0.5	<0.5	4.1	1.0	<0.5	4.
WR-119A	11/30/00	1.0	<0.5	<0.5	4.9	1.1	<0.5	3.
WR-119A	08/23/00	1.1	<0.5	<0.5	5.1	1.4	<0.5	11
WR-119A	02/16/00	1.3	<0.5	<0.5	5.1	1.3	<0.5	4.
WR-119A	10/28/99	1.2	<0.5	<0.5	5.4	1.4	<0.5	3.

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lead
	AWQS→		70	5	5	5	2	50
WR-119A	08/10/99	1.4	<0.5	<0.5	6.4	1.7	<0.5	4.0
WR-119A	05/13/99	1.4	<0.5	<0.5	6.1	1.8	<0.5	4.0
WR-119A	02/17/99	1.5	<0.5	<0.5	6.5	2.1	<0.5	<2
WR-119A	11/23/98	1.8	<0.5	0.5	7.2	2.0	<0.5	4.0
WR-119A	08/27/98	2.8	0.6	<0.5	5.9	2.1	<0.5	<30
WR-119A	05/21/98	1.3	<0.5	<0.5	4.2	1.5	<0.5	163.
WR-119A	03/13/98	1.7	<0.5	<1	5.1	1.9	<1	<30
WR-119A	03/13/98	1.7	<0.5	<1	5.7	2.1	<1	<30
WR-119A	11/18/97	2.4	0.5	0.9	9.2	2.9	<0.5	6.0
WR-119A	11/18/97	2.8	0.6	1.0	9.3	3.0	<0.5	6.0
WR-119A	08/04/97	3.1	0.7	1.1	9.6	3.0	<0.5	6.0
WR-119A	08/04/97	3.2	0.7	1.2	9.7	3.0	<0.5	6.0
WR-119A	05/28/97	3.8	0.8	1.8	9.5	2.6	<0.5	9.0
WR-119A	05/28/97	4.0	0.9	1.8	9.6	2.7	<0.5	9.0
WR-119A	02/24/97	3.0	0.74	1.3	11.0	3.3	<0.5	9.0
			-					70. 10
WR-119A	11/18/96	2.5	0.6	1.2	11.7	3.3	<0.5	11.
WR-119A	11/18/96	2.9	0.7	1.4	13.5	3.8	<0.5	13.
WR-119A	08/22/96	3.8	0.8	1.6	8.3	3.0	<0.5	NA
WR-119A	05/30/96	3.2	0.7	1.0	12.3	3.6	<0.5	7.0
WR-119A	05/30/96	3.6	0.9	1.1	16.0	4.0	<0.5	<15
WR-119A	02/15/96	3.2	<1	<2	11.0	3.4	<1	N/
WR-119A	11/08/95	4.3	0.9	1.5	16.0	5.1	<0.5	7.0
WR-119A	05/15/95	4.5	0.7	<0.5	10.0	4.1	<0.5	6.0
WR-119A	05/15/95	4.5	<2	<5	13.2	4.2	<5	8.0
WR-119A	01/19/95	6.8	<2	<5	22.0	6.8	<5	<5
WR-119A	11/08/94	8.0	1.1	0.9	24.6	8.1	<0.5	9.0
WR-119A	01/10/94	12.8	2.9	22.7	27.0	13.8	<1	11.
WR-119A	01/19/93	<0.3	<0.3	<0.3	<0.3	< 0.3	<1	10.
WR-119A	01/22/92	<0.3	<0.3	<0.3	<0.4	< 0.3	<1	13.
WR-119A	01/22/92	<0.3	<0.3	<0.3	<0.4	<0.3	<1	14.
WR-119A	02/04/91	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<2
WR-119A	02/06/90	<0.3	<0.4	<0.4	0.5	< 0.3	<1	11.
WR-120A	11/18/15	0.7	<0.5	<0.5	1	<0.5	<0.5	9.3
WR-120A	11/18/15	0.7	<0.5	<0.5	1.1	<0.5	<0.5	33
WR-120A	05/20/15	0.7	<0.5	<0.5	0.7	<0.5	<0.5	19.
WR-120A	05/20/15	0.6	<0.5	<0.5	0.6	<0.5	<0.5	12.
WR-120A	11/19/2014	0.6	<0.5	<0.5	0.8	<0.5	<0.5	15.
WR-120A	5/21/2014	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	11
WR-120A	5/21/2014	0.5	<0.5	<0.5	0.7	<0.5	<0.5	15
WR-120A	11/13/13	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	25
WR-120A	05/20/13	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	16
WR-120A	05/20/13	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	8.
WR-120A	11/14/12	0.6	<0.5	<0.5	0.6	<0.5	<0.5	5.7
WR-120A	05/17/12	0.8	<0.5	<0.5	0.7	<0.5	<0.5	29
WR-120A WR-120A	11/15/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	33.
WR-120A	11/15/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	61.
				10000000				
WR-120A WR-120A	11/17/03 05/13/03	1.7	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	5.
MM = 1 MIM	T U5/13/03 I	< 0.5	· <0.5	< 0.5	< 0.5	< 0.5	1 <115	11.

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lead
	AWQS→		70	5	5	5	2	50
WR-120A	08/12/02	2.1	<0.5	<0.5	<0.5	<0.5	<0.5	4.2
WR-120A	05/13/02	2.6	<0.5	<0.5	<0.5	<0.5	<0.5	8.1
WR-120A	11/15/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.8
WR-120A	08/15/01	<1	<1	<1	<1	<1	<1	3.5
WR-120A	05/09/01	9.8	1.6	46.3	24.5	12.8	0.6	4.8
WR-120A	02/14/01	8.7	1.3	17.9	21.2	11.8	<0.5	3.2
WR-120A	11/30/00	7.8	1.0	8.8	18.5	9.8	<0.5	7.5
WR-120A	08/23/00	8.4	1.2	23.4	17.4	10.8	<0.5	3.6
WR-120A	08/23/00	8.6	1.2	29.4	18.6	10.9	0.5	5.9
WR-120A	02/16/00	5.7	0.8	32.9	11.3	7.2	<0.5	4.5
WR-120A	10/27/99	3.5	<0.5	22.0	7.4	4.8	<0.5	3.0
WR-120A	08/09/99	2.8	<0.5	19.0	7.1	4.2	<0.5	5.0
WR-120A	05/12/99	2.0	<0.5	12.8	4.1	2.9	<0.5	4.0
WR-120A	02/01/99	2.2	<0.5	12.4	3.9	2.4	<0.5	4.0
WR-120A	12/01/98	1.7	<0.5	8.9	2.8	2.1	<0.5	5.0
		3.3	<0.5	17.0	3.2	2.7	<0.5	<30
WR-120A	08/27/98				1.9	1.6	<0.5	<30
WR-120A	05/21/98	1.3	<0.5	8.4		1.7		<3
WR-120A	03/13/98	1.3	<0.5	7.0	2.1		<1 <0.5	
WR-120A	12/30/97	1.5	<0.5	7.3	3.1	1.8	<0.5	10.
WR-120A	08/04/97	1.7	<0.5	7.8	3.2	1.8	<0.5	17.
WR-120A	05/28/97	1.6	<0.5	7.2	2.6	1.4	<0.5	13.
WR-120A	02/24/97	1.2	<0.5	3.3	2.5	1.5	<0.5	8.0
WR-120A	02/24/97	1.4	<0.5	4.2	3.0	1.9	<0.5	9.0
WR-120A	11/18/96	0.9	<0.5	1.3	2.7	1.4	<0.5	19.
WR-120A	08/22/96	0.9	<0.5	<0.5	1.3	0.9	<0.5	N/
WR-120A	05/30/96	0.5	<0.5	<0.5	1.6	0.9	<0.5	<15
WR-120A	05/30/96	0.6	<0.5	<1	2.1	0.9	<0.5	N/
WR-120A	02/15/96	<1	<1	<2	1.6	<1	<1	3.0
WR-120A	11/08/95	<0.5	<0.5	<1	1.7	0.9	<0.5	10.
WR-120A	05/15/95	<2	<2	<5	<2	<2	<5	6.0
WR-120A	01/19/95	<2	<2	<5	<2	<2	<5	<5
WR-120A	11/08/94	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	10.
WR-120A	01/10/94	<0.3	<0.3	<0.3	<0.3	<0.3	<1	11.
WR-120A	01/19/93	<0.3	<0.3	<0.3	<0.3	<0.3	<1	16.
WR-120A	01/19/93	<0.3	<0.3	<0.3	<0.3	<0.3	<1	18.
WR-120A	01/22/92	<0.3	<0.3	<0.3	0.5	<0.3	<1	11.
WR-120A	02/04/91	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<2
WR-120A	02/05/90	<0.3	<0.4	<0.4	0.5	< 0.3	<1	15.
WR-121A	11/17/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.6
WR-121A	05/19/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	16.
WR-121A	11/18/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	18.
WR-121A	5/20/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	11
WR-121A	11/12/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.6
WR-121A	11/12/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.6
WR-121A	5/21/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.2
WR-121A	11/13/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.3
WR-121A	11/13/12*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.4
WR-121A	5/14/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.6
WR-121A WR-121A	5/14/12*	<0.5	<0.5	<2	<0.5	<0.5	<1	6.6

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lea
	AWQS→		70	5	5	5	2	50
WR-121A	12/01/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	13
WR-121A	05/17/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	31
WR-121A	11/09/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-121A	05/18/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-121A	11/04/09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-121A	05/19/09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-121A	11/03/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
WR-121A	11/03/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-121A	05/19/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6
WR-121A	05/19/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.
WR-121A	11/06/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-121A	05/16/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.
WR-121A	11/07/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-121A	11/07/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-121A	05/22/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N.
WR-121A	11/21/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	12
WR-121A	05/09/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.
WR-121A	05/09/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-121A	11/15/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.
WR-121A	05/10/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5
WR-121A	05/10/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5
WR-121A	11/17/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.
WR-121A	05/13/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.
WR-121A	11/14/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-121A	08/13/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-121A	05/13/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3
WR-121A	05/13/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-121A	02/06/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3
WR-121A	11/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5
WR-121A	08/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4
WR-121A	08/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4
WR-121A	05/07/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5
WR-121A	05/07/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5
WR-121A	03/15/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N
WR-121A	02/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	32
WR-121A	11/28/00	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6
WR-121A	08/21/00	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7
WR-121A	02/14/00	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7
WR-121A WR-121A	10/26/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7
	08/10/99				73.353	V0000384		- 10
WR-121A		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6
WR-121A	05/17/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8
WR-121A	02/17/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-121A	02/17/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-121A	11/24/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8
WR-121A	08/11/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<;
WR-121A	08/11/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<;
WR-121A	05/22/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<;
WR-121A	03/13/98	<0.5	<0.5	<1	<1	<0.5	<1	<;
WR-121A	11/25/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	9
WR-121A	08/08/97	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lea
	$AWQS {\rightarrow}$	-	70	5	5	5	2	50
WR-121A	05/27/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	11.
WR-121A	02/26/97	<0.5	<0.5	<1	<0.5	<0.5	<0.5	30.
WR-121A	11/18/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	19.
WR-121A	05/30/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.0
WR-121A	05/30/96	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<15
WR-121A	11/07/95	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<15
WR-121A	05/15/95	<2	<2	<5	<2	<2	<5	<5
WR-121A	01/19/95	<2	<2	<5	<2	<2	<5	<5
WR-121A	01/10/94	<0.3	<0.3	<0.3	<0.3	<0.3	<1	5.0
WR-121A	01/19/93	<0.3	<0.3	<0.3	<0.3	<0.3	<1	9.0
WR-121A	01/22/92	<0.3	<0.3	<0.3	<0.4	<0.3	<1	5.
WR-121A	02/04/91	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<2
WR-121A	02/04/91	<0.4	<0.4	<0.4	<0.4	<0.4	<1	50.
WR-121A	02/05/90	<0.3	<0.4	<0.4	<0.4	<0.3	<1	6.0
VII 12 1/1	02/00/00	-0.0	0.1	0.1				
WR-122A	05/19/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	9.7
WR-122A	11/18/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	10.
WR-122A	05/20/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-122A	11/12/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.
WR-122A	05/21/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-122A	11/14/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-122A WR-122A	05/15/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.0
WR-122A WR-122A	11/15/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.4
WR-122A WR-122A	05/17/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.8
WR-122A WR-122A	11/09/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4
WR-122A WR-122A	05/18/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	10
	05/18/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	10
WR-122A		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	12
WR-122A	11/04/09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-122A	05/19/09		22.200			<0.5	<0.5	4.
WR-122A	11/03/08	<0.5	<0.5	<0.5	<0.5			3.
WR-122A	05/19/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
WR-122A	11/06/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-122A	05/16/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.3
WR-122A	11/07/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.
WR-122A	05/22/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N/
WR-122A	05/22/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N/
WR-122A	11/17/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.4
WR-122A	05/10/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.9
WR-122A	05/10/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.4
WR-122A	11/16/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-122A	05/11/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
WR-122A	11/19/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-122A	05/13/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	15.
WR-122A	11/14/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	34.
WR-122A	08/13/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.9
WR-122A	05/14/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-122A	02/06/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-122A	11/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-122A	08/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.9
WR-122A	05/07/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.5

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lea
	$AWQS {\rightarrow}$		70	5	5	5	2	50
WR-122A	02/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.5
WR-122A	11/28/00	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.6
WR-122A	08/21/00	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.3
WR-122A	02/14/00	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.1
WR-122A	10/25/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.0
WR-122A	08/09/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.0
WR-122A	05/13/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.0
WR-122A	02/17/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
WR-122A	11/24/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.0
WR-122A	08/11/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<3
WR-122A	05/22/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	39.
WR-122A	02/11/98	<0.5	<0.5	<1	<1	<0.5	<1	<3
WR-122A	11/25/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.0
WR-122A	08/08/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	18.
WR-122A	05/27/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	28
WR-122A	03/03/97	<0.5	<0.5	<1	<0.5	<0.5	<0.5	11
WR-122A	11/20/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	9.
WR-122A	05/31/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	22
WR-122A	05/31/96	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<15
WR-122A	11/08/95	<0.5	<0.5	<1	<0.5	<0.5	<0.5	</td
WR-122A	05/15/95	<2	<2	<5	<2	<2	<5	10
WR-122A	01/19/95	<2	<2	<5	<2	<2	<5	16
WR-122A WR-122A	01/10/94	<0.3	<0.3	<0.3	<0.3	<0.3	<1	15
WR-122A WR-122A	01/19/93	<0.3	<0.3	<0.3	<0.3	<0.3	<1	17
WR-122A WR-122A	01/19/93	<0.3	<0.3	<0.3	<0.4	<0.3	<1	280
WR-122A WR-122A	02/04/91	<0.4	<0.4	<0.4	<0.4	<0.4		20
WR-122A WR-122A	02/04/91	<0.4	<0.4	<0.4	<0.4		<1 <1	
VVR-122A	02/06/90	~ 0.3	V0.4	\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<0.3	+ 1	20
WR-244A	11/17/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-244A	05/20/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.2
WR-244A	11/18/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.1
WR-244A	05/20/14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7
WR-244A	11/13/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.
WR-244A	05/21/13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.
WR-244A	11/14/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	9.
WR-244A	05/15/12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1
WR-244A	11/15/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	05/17/11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-244A	11/09/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-244A	11/09/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
WR-244A	06/02/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	11/04/09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	05/19/09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
								4.
WR-244A WR-244A	11/03/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WWFS = ZALAA	05/21/08 11/06/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5
	1 11/06/07 1	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-244A		-0 -	-0 -	.0 -				
WR-244A WR-244A	11/06/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3007000
WR-244A		<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	5. 4. 4.

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lea
	AWQS→		70	5	5	5	2	50
WR-244A	05/22/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
WR-244A	11/22/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	9.7
WR-244A	11/22/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.0
WR-244A	05/09/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.:
WR-244A	11/15/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-244A	05/10/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	13
WR-244A	11/17/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-244A	05/12/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	11/12/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	08/12/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	05/14/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-244A	02/07/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-244A	11/14/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-244A	08/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	05/07/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-244A	03/15/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N.
WR-244A	02/13/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.
WR-244A	11/28/00	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	2.
WR-244A	08/21/00	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-244A	02/14/00	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-244A	02/14/00	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	10/27/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	08/10/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	05/13/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	02/17/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	_ 2.
WR-244A	02/17/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-244A	11/23/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-244A	08/11/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<3
WR-244A	05/21/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	48
WR-244A	02/27/98	<0.5	<0.5	<1	<1	<0.5	<1	<3
WR-244A	11/25/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-244A	11/25/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-244A	08/08/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-244A	05/28/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	02/26/97	<0.5	<0.5	<1	<0.5	<0.5	<0.5	3.
WR-244A	11/20/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	10
WR-244A	08/22/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-244A	08/22/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.
WR-244A	05/30/96	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-244A	05/30/96	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<1
WR-244A	02/15/96	<1	<1	<2	<1	<1	<1	<1
WR-244A	11/07/95	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<1
WR-245A	11/17/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	26
WR-245A	11/17/03	0.9	<0.5	0.6	1.3	<0.5	<0.5	13
WR-245A	05/12/03	<0.5	<0.5	1.3	0.6	<0.5	<0.5	5.
WR-245A	11/25/02	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-245A	08/12/02	2.4	<0.5	2.9	<0.5	<0.5	<0.5	13
WR-245A	05/14/02	1.9	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-245A	02/07/02	2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lea
	$AWQS {\rightarrow}$		70	5	5	5	2	50
WR-245A	11/19/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<;
WR-245A	08/15/01	<1	<1	<1	<1	<1	<1	<
WR-245A	08/15/01	<1	<1	<1	<1	<1	<1	5.
WR-245A	05/14/01	1.1	<0.5	0.7	6.8	2.7	<0.5	4.
WR-245A	05/14/01	1.2	<0.5	0.7	7.2	2.8	0.5	6.
WR-245A	02/14/01	<0.5	<0.5	1.9	4.7	1.6	<0.5	2.
WR-245A	02/14/01	<0.5	<0.5	2.0	5.1	1.6	<0.5	91
WR-245A	11/30/00	0.5	<0.5	1.8	4.6	1.3	<0.5	2.
WR-245A	11/30/00	0.5	<0.5	2.0	4.8	1.4	<0.5	3
WR-245A	08/23/00	0.9	<0.5	5.2	5.8	2.2	0.7	3
WR-245A	02/16/00	4.0	<0.5	16.7	15.9	6.3	3.0	<
WR-245A	02/16/00	4.2	<0.5	19.4	16.9	6.7	3.4	2
WR-245A	10/27/99	6.3	<0.5	23.2	31.5	11.2	6.4	3.
WR-245A	08/10/99	4.5	<0.5	10.2	21.7	7.8	4.7	<
WR-245A	08/10/99	4.8	<0.5	11.0	22.9	8.2	4.9	<
WR-245A	05/13/99	2.9	<0.5	5.8	14.1	5.6	2.7	<
WR-245A	05/13/99	3.7	<0.5	6.8	16.2	6.6	3.3	<
WR-245A	02/17/99	2.7	<0.5	7.6	16.4	7.2	3.4	<
WR-245A	11/23/98	3.4	<0.5	12.1	24.5	8.9	5.8	4
WR-245A	08/11/98	1.3	<1	<1	10.0	3.5	2.1	<;
WR-245A	05/21/98	<1.2	<1.2	<1.2	8.6	3.3	<1.2	44
WR-245A	02/13/98	0.9	<0.5	1.3	8.4	2.6	1.4	<;
WR-245A	11/18/97	1.1	<0.5	1.6	13.9	3.9	1.9	6
WR-245A	08/04/97	0.9	<0.5	1.0	8.0	1.8	0.9	9
WR-245A	08/04/97	1.0	<0.5	1.3	8.9	2.2	1.0	10
WR-245A	05/28/97	0.9	<0.5	1.3	7.0	1.5	1.0	10
WR-245A	02/24/97	0.84	<0.5	<1	10.0	2.1	0.83	6
WR-245A	11/20/96	0.6	<0.5	0.9	8.5	1.9	0.6	5
WR-245A	11/20/96	0.6	<0.5	0.9	9.6	2.0	0.7	5
WR-245A	08/22/96	1.1	<0.5	1.3	7.1	2.3	2.4	8
WR-245A	05/30/96	0.6	<0.5	0.8	13.0	2.1	0.9	1
WR-245A	05/30/96	0.9	<0.5	<1	8.4	2.6	1.0	<1
WR-245A	02/15/96	<1	<1	<2	6.6	2.0	1.2	<1
WR-245A	02/15/96	<1	<1	<2	7.3	2.3	2.3	<1
WR-245A	11/09/95	0.7	<0.5	1.6	8.5	2.4	1.2	
WR-245A	11/09/95	0.7	<0.5	1.7	8.9	2.4	1.3	
W1(-245/A	11/09/93	0.7	\0.5	1.7	0.9	2.4	1.3	
WR-246A	11/08/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5
WR-246A	05/23/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N
WR-246A	11/21/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4
WR-246A	11/21/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4
WR-246A	05/11/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5
WR-246A	11/16/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6
WR-246A	11/16/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	9
WR-246A	05/11/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-246A	11/18/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5
WR-246A	05/14/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
WR-246A	05/14/03	<0.5	<0.5				- XVVVVVV	4
				<0.5	<0.5	<0.5	<0.5	5
WR-246A	05/08/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lea
	AWQS→		70	5	5	5	2	50
WR-246A	05/17/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.0
WR-246A	02/09/98	<0.5	<0.5	<1	<1	<0.5	<1	<30
WR-246A	11/20/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	16.
WR-246A	06/30/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	14.
WR-246A	05/31/96	<0.5	<0.5	<1	<0.5	<0.5	<0.5	N/
WR-246A	11/07/95	<0.5	<0.5	<1	<0.5	<0.5	<0.5	7.0
MD 0474	11/08/06	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	2.8
WR-247A					0.6	<0.5	<0.5	N/
WR-247A	05/23/06	<0.5	<0.5	<0.5		<0.5	<0.5	2.
WR-247A	11/21/05	<0.5	<0.5	<0.5	<0.5			_
WR-247A	05/09/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.
WR-247A	11/16/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-247A	05/11/04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
WR-247A	11/18/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
WR-247A	05/14/03	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-247A	11/13/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-247A	11/13/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-247A	05/16/02	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<2
WR-247A	05/08/01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.
WR-247A	10/25/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-247A	05/17/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.
WR-247A	05/17/99	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.
WR-247A	02/09/98	<0.5	<0.5	<1	<1	<0.5	<1	<3
WR-247A	02/09/98	<0.5	<0.5	<1	<1	<0.5	<1	<3
WR-247A	11/20/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.
WR-247A	05/27/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.
WR-247A	05/27/97	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	10
WR-247A	05/31/96	<0.5	<0.5	<1	<0.5	<0.5	<0.5	N
WR-247A	05/31/96	<0.5	<0.5	<1	<0.5	<0.5	<0.5	N
WR-247A	11/07/95	<0.5	<0.5	<1	<0.5	<0.5	<0.5	5.
WICZIII	11/01/00	0.0	0.0					
WR-276A	06/13/05	1.4	<0.5	<0.5	<0.5	<0.5	<0.5	8.
WR-276A	06/13/05	1.5	<0.5	<0.5	<0.5	<0.5	<0.5	9.
WR-276A	11/22/04	1.6	<0.5	<0.5	3.1	0.8	<0.5	2.
WR-276A	11/22/04	1.6	<0.5	<0.5	3.1	0.8	<0.5	2.
WR-276A	05/20/04	2.5	<0.5	<0.5	9.1	2.2	<0.5	11
WR-276A	12/03/03	2.4	<0.5	<0.5	6.3	1.6	<0.5	2.
WR-276A	05/19/03	2.5	<0.5	<0.5	8.1	2.0	<0.5	3.
WR-276A	11/14/02	3.4	0.5	1.3	11.3	3.0	<0.5	4.
WR-276A	08/14/02	3.0	0.5	<0.5	10.6	3.0	<0.5	5.
WR-276A	05/20/02	3.2	0.8	<0.5	14.1	4.3	<0.5	2.
WR-276A	02/12/02	3.7	0.8	0.7	12.3	4.0	<0.5	2.
WR-276A	11/15/01	4.4	1.1	<0.5	14.8	5.1	<0.5	<;
WR-276A	08/14/01	<1	<1	<1	2.6	<1	<1	<
WR-276A	05/14/01	8.2	2.6	2.9	30.3	11.4	<0.5	<:
WR-276A	03/14/01	8.5	2.7	3.0	30.0	11.7	<0.5	2.
				2.8	32.5	11.8	<0.5	2.
WR-276A	11/30/00	10.3	3.0			12.3	<0.5	3.
WR-276A	08/23/00	10.4	3.1	3.3	30.1			
WR-276A	02/15/00	8.8	2.1	2.2	24.8	9.3	<0.5	5.
WR-276A	02/15/00	8.9	2.3	2.5	25.2	9.5	<0.5	

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Le
	AWQS→		70	5	5	5	2	5
WR-276A	10/28/99	10.3	2.2	1.8	30.2	11.4	<0.5	5
WR-276A	10/28/99	10.4	2.3	1.8	31.8	11.8	<0.5	6
WR-276A	08/09/99	10.4	2.4	1.9	38.9	13.9	<0.5	7
WR-276A	05/12/99	8.9	2.0	2.0	31.1	11.5	<0.5	7
WR-276A	02/01/99	10.6	2.3	2.0	35.0	12.9	<0.5	7
WR-276A	11/23/98	10.2	2.4	1.0	27.5	11.5	<0.5	8
WR-276A	11/23/98	13.2	3.1	1.2	35.1	15.8	<0.5	ç
WR-276A	08/27/98	19.0	4.3	1.5	26.0	15.0	<0.5	<
WR-276A	05/21/98	10.0	0.8	<0.8	24.0	13.0	<0.8	<
WR-276A	05/21/98	9.9	2.0	<0.8	24.0	13.0	<0.8	3
WR-276A	02/13/98	12.0	2.4	2.8	29.0	16.0	<1	<
WR-276A	11/18/97	18.9	4.2	7.4	56.4	26.0	<0.5	1
WR-276A	08/04/97	20.4	5.1	9.6	60.9	24.0	<0.5	1
WR-276A	05/12/97	14.0	<0.5	11.8	34.8	18.4	<0.5	3
WR-276A	05/12/97	18.6	4.2	6.3	46.0	21.0	0.5	1
WR-276A	04/17/97	17.8	3.9	8.7	43.3	20.6	<0.5	3
***************************************	0 1/ 1//07	17.0	0.0	0.1	40.0	20.0		
WR-285A	08/18/15	<0.5	<0.5	<0.5	1.0	<0.5	<0.5	1
WR-285A	08/18/15	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	1
WR-285A	05/18/15	0.7	<0.5	<0.5	0.6	<0.5	<0.5	1
WR-285A	02/09/15	0.6	<0.5	<0.5	0.7	<0.5	<0.5	1
WR-285A	11/17/14	0.7	<0.5	<0.5	0.6	<0.5	<0.5	1
WR-285A	08/18/14	0.7	<0.5	<0.5	0.5	<0.5	<0.5	ı
WR-285A	05/19/14	0.6	<0.5	<0.5	0.5	<0.5	<0.5	1
WR-285A	02/10/14	0.8	<0.5	<0.5	0.6	<0.5	<0.5	ı
WR-285A	02/10/14	0.8	<0.5	<0.5	0.7	<0.5	<0.5	1
WR-285A	11/12/13	0.6	<0.5	<0.5	0.8	<0.5	<0.5	1
WR-285A	08/19/13	0.6	<0.5	<0.5	0.8	<0.5	<0.5	
WR-285A	05/20/13	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	1
WR-285A	02/19/13	0.7	<0.5	<0.5	0.6	<0.5	<0.5	<u> </u>
WR-285A	11/13/12	0.7	<0.5	<0.5	0.7	<0.5	<0.5	i
WR-285A	08/21/12	0.8	<0.5	<0.5	0.8	<0.5	<0.5	i i
WR-285A	05/14/12	0.8	<0.5	<0.5	0.8	<0.5	<0.5	1
WR-285A	02/15/12	0.8	<0.5	<0.5	0.8	<0.5	<0.5	i
WR-285A	2/15/12*	0.72	<0.5	<0.5	0.68	<0.5	<0.5	
WR-285A	11/14/11	0.8	<0.5	<0.5	0.8	<0.5	<0.5	
WR-285A	08/22/11	0.8	<0.5	<0.5	1.1	<0.5	<0.5	
WR-285A	05/16/11	0.8	<0.5	<0.5	1.3	<0.5	<0.5	
WR-285A	05/16/11	0.8	<0.5	<0.5	1.2	<0.5	<0.5	'
WR-285A	02/22/11	0.9	<0.5	<0.5	1.4	<0.5	<0.5	H
WR-285A	02/22/11	0.9	<0.5	<0.5	1.4	<0.5	<0.5	-
WR-285A	11/08/10	0.9	<0.5	<0.5				
Name of the Control o		1000 1000			2.2	<0.5	<0.5	_
WR-285A	08/24/10	0.8	< 0.5	<0.5	2.4	<0.5	<0.5	
WR-285A	05/17/10	0.9	<0.5	<0.5	2.7	<0.5	<0.5	
WR-285A	02/22/10	8.0	<0.5	<0.5	2.7	<0.5	<0.5	
WR-285A	11/03/09	0.9	<0.5	<0.5	3.4	<0.5	<0.5	
WR-285A	05/18/09	0.6	<0.5	<0.5	3.6	<0.5	<0.5	!
WR-285A	02/24/09	8.0	<0.5	<0.5	4.6	0.6	<0.5	
WR-285A	11/04/08	1	< 0.5	< 0.5	3.9	0.6	< 0.5	1

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lea
	$AWQS \rightarrow$		70	5	5	5	2	50
WR-285A	05/20/08	1	<0.5	<0.5	4	0.6	<0.5	N
WR-285A	05/20/08	1	<0.5	<0.5	4.2	0.6	<0.5	N.
WR-285A	02/25/08	1.2	<0.5	<0.5	4.2	0.8	<0.5	N.
WR-285A	11/07/07	1.4	<0.5	<0.5	3.3	0.7	<0.5	N
WR-285A	11/07/07	1.4	<0.5	<0.5	3.4	0.7	<0.5	N
WR-285A	08/09/07	1.1	<0.5	<0.5	2.4	0.6	<0.5	N
WR-285A	05/17/07	1.2	<0.5	<0.5	2.2	0.5	<0.5	N
WR-285A	02/21/07	1.2	<0.5	<0.5	2.6	0.6	<0.5	N
WR-285A	11/09/06	1.4	<0.5	<0.5	2.5	0.8	<0.5	N
WR-285A	08/21/06	1.3	<0.5	<0.5	2.9	8.0	<0.5	N
WR-285A	05/24/06	1.3	<0.5	<0.5	3.4	1.0	<0.5	N
WR-285A	02/21/06	1.7	<0.5	<0.5	4.6	1.4	<0.5	<
WR-285A	11/16/05	1.6	<0.5	<0.5	5.4	1.4	<0.5	N
WR-285A	08/22/05	1.4	<0.5	<0.5	5.3	1.7	<0.5	N
WR-285A	08/22/05	1.4	<0.5	<0.5	5.3	1.6	<0.5	N
WR-285A	06/09/05	1.7	<0.5	<0.5	6.9	2.0	<0.5	3
WR-285A	02/22/05	2.1	0.6	<0.5	9.1	2.9	<0.5	N
WR-285A	11/01/04	4.2	1.4	<0.5	20.2	6.2	<0.5	4
WR-285A	11/01/04	4.3	1.4	<0.5	19.4	5.9	<0.5	2
WR-285A	05/12/04	4.3	1.2	<0.5	18.7	5.9	<0.5	2
WR-285A	05/12/04	4.5	1.3	<0.5	19.4	6.1	<0.5	2
WR-285A	11/19/03	3.5	1.0	<0.5	16.7	5.0	<0.5	2
WR-285A	11/19/03	3.5	1.0	<0.5	17.0	4.9	<0.5	2
WR-285A	08/19/03	3.2	0.9	<0.5	15.5	4.9	<0.5	3
WR-285A	05/19/03	3.4	1.0	<0.5	17.3	5.6	<0.5	2
WR-285A	11/25/02	3.3	1.0	<0.5	16.4	5.8	<0.5	3
WR-285A	08/14/02	2.0	0.5	0.6	12.0	4.2	<0.5	4
WR-285A	08/14/02	2.2	0.6	0.7	12.4	4.4	<0.5	4
WR-285A	05/20/02	0.6	<0.5	<0.5	5.6	1.6	<0.5	3
WR-285A	02/12/02	<0.5	<0.5	<0.5	2.0	<0.5	<0.5	4
WR-285A	02/12/02	<0.5	<0.5	<0.5	2.2	<0.5	<0.5	4
WR-285A	11/14/01	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	4
WR-285A	08/14/01	<0.5	<0.5	<0.5	1.9	<0.5	<0.5	4
WR-285A	05/08/01	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	4
WR-285A	02/15/01	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	5
WR-285A	11/29/00	<0.5	<0.5	<0.5	2.4	<0.5	<0.5	5
WR-285A	08/22/00	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	7
WR-285A	02/15/00	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	7
WR-285A	10/26/99	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	8
WR-285A	08/09/99	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	11
WR-285A	05/12/99	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	13
WR-285A	02/01/99	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	8
WR-285A	11/24/98	<0.5	<0.5	<0.5	1.0	<0.5	<0.5	7
WR-285A	11/24/98	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	7
WR-285A	08/27/98	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	<
	05/22/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	39
WR-285A		<0.5	<0.5	<1	<1	<0.5	<1	<
WR-285A	02/11/98		<0.5	<0.5	0.8	<0.5	<0.5	7
WR-285A	11/20/97	<0.5				<0.5	<0.5	13
WR-285A	07/28/97	<0.5	<0.5	<0.5	0.7	<u>~0.5</u>	~0.5	10

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Le
	AWQS→		70	5	5	5	2	5
WR-286A	11/18/15	0.6	<0.5	<0.5	1.1	<0.5	<0.5	7.
WR-286A	05/26/15	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	4.
WR-286A	11/19/14	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	11
WR-286A	11/19/14	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	1
WR-286A	05/21/14	<0.5	<0.5	<0.5	1	<0.5	<0.5	6
WR-286A	11/13/13	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	7
WR-286A	05/21/13	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	- 6
WR-286A	11/14/12	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	
WR-286A	05/15/12	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	7
WR-286A	12/01/11	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4
WR-286A	05/17/11	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
WR-286A	11/09/10	0.8	<0.5	<0.5	<0.5	<0.5		
WR-286A	11/05/09	1.3	<0.5	<0.5			<0.5	
WR-286A	11/05/08	0.7	<0.5		<0.5	<0.5	<0.5	- 6
WR-286A				<0.5	<0.5	<0.5	<0.5	7
	12/06/07	0.6	<0.5	<0.5	0.7	<0.5	<0.5	
WR-286A	11/14/06	1.3	<0.5	<0.5	2.1	0.5	<0.5	. 7
WR-286A	05/30/06	1.4	<0.5	<0.5	3.8	0.9	<0.5	١
WR-286A	11/29/05	2.0	<0.5	<0.5	6.4	1.4	<0.5	7
WR-286A	06/07/05	2.7	<0.5	0.7	7.2	1.8	<0.5	
WR-286A	06/07/05	2.6	<0.5	0.7	6.8	1.8	<0.5	5
WR-286A	11/22/04	3.5	<0.5	1.8	7.4	2.2	<0.5	4
WR-286A	05/20/04	3.7	<0.5	0.6	8.3	2.4	<0.5	3
WR-286A	05/20/04	3.5	<0.5	0.6	8.3	2.3	<0.5	4
WR-286A	11/25/03	2.7	<0.5	<0.5	9.6	3.0	<0.5	4
WR-286A	05/15/03	1.9	<0.5	<0.5	8.6	2.8	<0.5	3
WR-286A	11/25/02	1.8	<0.5	<0.5	6.7	1.9	<0.5	
WR-286A	08/14/02	2.2	<0.5	<0.5	8.2	2.3	<0.5	3
WR-286A	05/20/02	2.7	<0.5	<0.5	10.4	3.1	<0.5	2
WR-286A	02/12/02	3.4	0.5	<0.5	11.2	3.3	<0.5	2
WR-286A	11/14/01	4.8	8.0	<0.5	15.4	4.9	<0.5	3
WR-286A	08/14/01	6.5	1.0	<0.5	16.0	6.2	<0.5	3
WR-286A	08/14/01	6.7	1.1	<0.5	17.0	6.3	<0.5	3
WR-286A	05/08/01	7.0	1.4	<0.5	23.4	7.8	<0.5	4
WR-286A	05/08/01	7.2	1.5	<0.5	23.9	8.2	<0.5	4
WR-286A	02/15/01	8.8	1.8	<0.5	28.2	10.0	<0.5	4
WR-286A	11/29/00	10.2	1.8	<0.5	29.0	10.1	<0.5	4
WR-286A	08/22/00	11.6	2.1	<0.5	33.8	12.6	<0.5	4
WR-286A	02/15/00	12.0	2.1	<0.5	34.0	13.1	<0.5	5
WR-286A	10/27/99	11.1	1.6	1.0	31.7	14.7	<0.5	6
WR-286A	10/27/99	11.7	1.6	1.1	32.8	14.9	<0.5	
WR-286A	08/09/99	10.3	1.6	3.0	37.5	13.9	<0.5	6
WR-286A	05/18/99	9.0	1.3	3.4	34.8	11.3	<0.5	7
WR-286A	02/01/99	8.1	1.1	4.0	26.7	11.4	<0.5	38
WR-286A	12/01/98	9.5	1.3	3.7	24.5	11.4		7
WR-286A	12/01/98	9.7	1.3	3.8			<0.5	7
WR-286A	08/27/98				27.7	12	<0.5	3
		11.0	1.3	4.6	18.0	8.9	<0.5	<
WR-286A	08/27/98	11.0	1.3	4.7	18.0	9	<0.5	3
WR-286A	05/22/98	5.0	<0.5	<0.5	12.0	6.0	<0.5	34
WR-286A WR-286A	05/22/98	5.3 4.8	<0.5 <0.5	<0.5 2.0	12.0	6.0	<0.5	43

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lead
	AWQS→		70	5	5	5	2	50
WR-286A	11/20/97	5.7	<0.5	2.0	16.7	6.4	<0.5	10.0
WR-286A	07/28/97	6.7	<0.5	2.3	17.7	5.7	<0.5	18.0
WR-321A	11/19/15	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	40.8
WR-321A	08/19/15	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	NA
WR-321A	05/21/15	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	4.33
WR-321A	02/10/15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	- NA
WR-321A	11/20/14	<0.5	<0.5	<0.5	1	<0.5	<0.5	23.1
WR-321A	08/19/14	<0.5	<0.5	<0.5	1.9	<0.5	<0.5	NA
WR-321A	05/22/14	0.7	<0.5	<0.5	2.2	<0.5	<0.5	4.0
WR-321A	02/11/14	0.8	<0.5	<0.5	2.5	0.6	<0.5	4.5
WR-321A	11/14/13	0.9	<0.5	<0.5	2.8	0.7	<0.5	4.5
WR-321A	08/20/13	1	<0.5	<0.5	3	0.8	<0.5	NA
WR-321A	05/23/13	1.5	<0.5	<0.5	5.2	1.3	<0.5	5.5
WR-321A	02/20/13	1.4	<0.5	<0.5	5.5	1.4	<0.5	NA
WR-321A	11/15/12	1.7	<0.5	<0.5	7	1.7	<0.5	14
WR-321A	08/22/12	1.6	<0.5	<0.5	6.6	1.7	<0.5	NA
WR-321A	05/17/12	1.8	<0.5	<0.5	6.7	1.9	<0.5	6.3
WR-321A	02/16/12	1.7	<0.5	<0.5	7.2	1.9	<0.5	N/
WR-321A	11/17/11	1.8	<0.5	<0.5	6.7	1.9	<0.5	8.8
WR-321A	08/23/11	1.8	<0.5	<0.5	8.5	2.0	<0.5	N/
WR-321A	05/19/11	2.2	<0.5	<0.5	9.7	2.7	<0.5	6.
WR-321A	02/23/11	2	<0.5	<0.5	9	2.3	<0.5	10
WR-321A	11/15/10	2.1	<0.5	<0.5	10	2.8	<0.5	10
WR-321A	08/24/10	1.9	<0.5	<0.5	9.4	2.7	<0.5	N/
WR-321A	06/02/10	1.7	<0.5	<0.5	8.9	2.6	<0.5	15
WR-321A	02/23/10	1.8	<0.5	<0.5	9	2.6	<0.5	N/
WR-321A	11/09/09	1.8	<0.5	<0.5	8.6	2.6	<0.5	5
WR-321A	05/21/09	0.8	<0.5	<0.5	4.5	1.4	<0.5	8.3
WR-321A	11/06/08	0.5	<0.5	<0.5	2.7	0.8	<0.5	33
WR-321A	05/22/08	0.6	<0.5	<0.5	2.6	0.8	<0.5	7.
WR-321A	11/08/07	0.7	<0.5	<0.5	2.8	0.9	<0.5	4.
WR-321A	05/22/07	0.8	<0.5	<0.5	3.0	1.0	<0.5	5.
WR-321A	11/14/06	0.9	<0.5	<0.5	3.0	1.1	<0.5	2.
WR-321A	05/30/06	0.9	<0.5	<0.5	3.4	1.2	<0.5	N/
WR-321A	11/29/05	1.0	<0.5	<0.5	4.4	1.5	<0.5	4.
WR-321A	11/29/05	1.0	<0.5	<0.5	4.1	1.4	<0.5	5.
WR-321A	06/07/05	1.0	<0.5	<0.5	3.9	1.4	<0.5	6.
WR-321A	11/18/04	1.2	<0.5	<0.5	4.1	1.6	<0.5	5.
WR-321A	11/18/04	1.1	<0.5	<0.5	4.0	1.4	<0.5	7.
WR-321A	05/13/04	1.1	<0.5	<0.5	4.3	1.6	<0.5	25
WR-321A	11/24/03	1.1	<0.5	<0.5	5.1	1.8	<0.5	19
WR-321A	05/15/03	1.3	<0.5	<0.5	5.1	1.8	<0.5	4.
WR-321A	05/15/03	1.3	<0.5	<0.5	5.4	1.9	<0.5	4.
WR-321A	11/25/02	1.4	<0.5	<0.5	5.3	1.9	<0.5	7.3
	08/15/02	1.6	<0.5	0.6	5.4	2.2	<0.5	5.
WR-321A	05/21/02	1.5	<0.5	0.7	6.0	2.1	<0.5	6.
WR-321A		1.4	<0.5	0.7	5.6	1.8	<0.5	6.
WR-321A	02/12/02	1.4	<0.5	0.8	5.9	2.0	<0.5	7.
WR-321A WR-321A	11/14/01	1.6	<0.5	0.8	6.0	2.1	<0.5	7.8

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Le
	AWQS→		70	5	5	5	2	5
WR-321A	09/27/01	1.3	<0.5	0.6	6.3	1.8	<0.5	N
WR-321A	08/14/01	1.7	<0.5	<0.5	5.0	1.9	<0.5	14
WR-321A	07/30/01	1.6	<0.5	0.8	6.2	2.2	<0.5	N
WR-321A	05/09/01	1.5	<0.5	0.8	5.4	1.8	<0.5	8
WR-321A	02/15/01	1.3	<0.5	1.0	5.2	1.7	<0.5	8
WR-321A	02/15/01	1.4	<0.5	1.1	5.3	1.8	<0.5	9
WR-321A	11/29/00	1.3	<0.5	1.0	4.5	1.4	<0.5	8
WR-321A	11/29/00	1.3	<0.5	1.0	4.6	1.4	<0.5	16
WR-321A	08/22/00	1.2	<0.5	1.2	4.7	1.5	<0.5	10
WR-321A	08/22/00	1.3	<0.5	1.2	4.9	1.6	<0.5	11
WR-321A	02/17/00	0.7	<0.5	1.0	2.6	0.8	<0.5	11
WR-321A	10/26/99	<0.5	<0.5	0.7	2.1	0.6	<0.5	12
WR-321A	08/09/99	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	14
WR-321A	08/09/99	<0.5	<0.5	0.5	2.2	0.5	<0.5	14
WR-321A	05/18/99	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	14
WR-321A	05/18/99	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	19
WR-321A	02/01/99	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	15
WR-321A	02/01/99	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	16
WR-321A	11/24/98	<0.5	<0.5	<0.5	1.0	<0.5	<0.5	20
WR-321A	08/11/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
WR-321A	05/22/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	76
WR-321A	01/22/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<:
***************************************	01722700	-0.0	-0.0	10.0	10.0	10.0	10.0	
WR-348A	05/25/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N
WR-348A	05/25/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N
WR-348A	11/17/05	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	4
WR-348A	11/17/05	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	5
WR-348A	05/10/05	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	37
WR-348A	11/16/04	<0.5	<0.5	<0.5	1.5	<0.5	<0.5	12
WR-348A	05/11/04	<0.5	<0.5	<0.5	2.2	<0.5	<0.5	<
WR-348A	05/11/04	<0.5	<0.5	<0.5	1.9	<0.5	<0.5	
WR-348A	11/18/03	<0.5	<0.5	<0.5	2.2	<0.5	<0.5	
WR-348A	11/18/03	<0.5	<0.5	<0.5	2.2	<0.5	<0.5	2
WR-348A	05/13/03	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	
WR-348A	11/14/02	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	2
WR-348A	11/14/02	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	4
WR-348A	08/13/02	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	3
WR-348A	05/16/02	<0.5	<0.5	<0.5	2.8	<0.5	<0.5	3
WR-348A	05/16/02	<0.5	<0.5					
WR-348A	02/07/02	<0.5	<0.5	<0.5	2.9	<0.5	<0.5	4
WR-348A	11/13/01	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	12
WR-348A	08/13/01	<0.5		<0.5	2.2	<0.5	<0.5	18
			<0.5	<0.5	1.2	<0.5	<0.5	17
WR-348A	05/07/01	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	15
WR-348A	02/13/01	<0.5	<0.5	<0.5	1.0	<0.5	<0.5	17
WR-348A	02/13/01	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	18
WR-348A	11/28/00	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	12
WR-348A	11/28/00	<0.5	<0.5	<0.5	1.5	<0.5	<0.5	12
WR-348A	08/21/00	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	10
WR-348A	08/21/00	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	12
WR-348A	02/14/00	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	2

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lead
	AWQS→		70	5	5	5	2	50
WR-348A	10/25/99	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<2
WR-348A	10/25/99	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<2
WR-348A	08/10/99	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	5.0
VR-348A abandoned	in 2008							
WR-371A	11/16/15	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	NA
WR-371A	08/18/15	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	NA
WR-371A	05/18/15	0.5	<0.5	<0.5	0.6	<0.5	<0.5	NA
WR-371A	02/09/15	0.6	<0.5	<0.5	0.5	<0.5	<0.5	NA
WR-371A	11/17/14	0.6	<0.5	<0.5	0.8	<0.5	<0.5	NA
WR-371A	11/17/14	0.6	<0.5	<0.5	0.8	<0.5	<0.5	NA
WR-371A	08/18/14	0.6	<0.5	<0.5	0.8	<0.5	<0.5	NA
WR-371A	08/18/14	0.6	<0.5	<0.5	0.7	<0.5	<0.5	NA
WR-371A	05/19/14	0.7	<0.5	<0.5	0.7	<0.5	<0.5	NA
WR-371A	02/10/14	0.8	<0.5	<0.5	0.9	<0.5	<0.5	NA
WR-371A	11/12/13	0.7	<0.5	<0.5	0.9	<0.5	<0.5	NA
WR-371A	08/19/13	0.7	<0.5	<0.5	1	<0.5	<0.5	NA
WR-371A	05/20/13	0.7	<0.5	<0.5	1	<0.5	<0.5	NA
WR-371A	03/20/13	0.7	<0.5	<0.5	1	<0.5	<0.5	NA
WR-371A	11/13/12	0.7	<0.5	<0.5	1.2	<0.5	<0.5	NA
	08/21/12	0.8	<0.5	<0.5	1.4	<0.5	<0.5	NA
WR-371A	8/21/12*	0.8	<0.5	<0.5	1.3	<0.5	<0.5	NA
WR-371A			<0.5	<0.5	1.5	<0.5	<0.5	NA
WR-371A	05/14/12	0.8	<0.5	<0.5	1.2	<0.5	<0.5	NA
WR-371A	02/15/12	0.7		<0.5	1.4	<0.5	<0.5	NA
WR-371A	11/14/11	0.8	<0.5		1.4	<0.5	<0.5	NA NA
WR-371A	08/22/11	0.7	<0.5	<0.5 <0.5	1.5	<0.5	<0.5	NA
WR-371A	05/16/11	0.8	<0.5			<0.5	<0.5	NA NA
WR-371A	02/22/11	0.9	<0.5	<0.5	1.5	<0.5		NA
WR-371A	11/08/10	0.8	<0.5	<0.5	1.8		<0.5	
WR-371A	11/08/10	8.0	<0.5	<0.5	1.8	<0.5	<0.5	NA
WR-371A	08/24/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
WR-371A	05/17/10	0.7	<0.5	<0.5	1.4	<0.5	<0.5	NA
WR-371A	02/22/10	0.6	<0.5	<0.5	1.4	<0.5	<0.5	NA
WR-371A	11/03/09	0.6	<0.5	<0.5	1.2	<0.5	<0.5	NA
WR-371A	11/03/09	0.6	<0.5	<0.5	1.2	<0.5	<0.5	NA
WR-371A	05/18/09	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	NA
WR-371A	02/24/09	0.7	<0.5	<0.5	1.7	<0.5	<0.5	NA
WR-371A	11/04/08	0.9	<0.5	<0.5	0.9	<0.5	<0.5	NA
WR-371A	11/04/08	0.9	<0.5	<0.5	0.9	<0.5	<0.5	NA
WR-371A	08/18/08	0.9	<0.5	<0.5	2.1	0.6	<0.5	NA
WR-371A	08/18/08	0.9	<0.5	<0.5	1.9	0.6	<0.5	NA
WR-371A	05/20/08	0.9	<0.5	<0.5	1.9	0.6	<0.5	NA
WR-371A	02/25/08	1.0	<0.5	<0.5	2.4	0.7	<0.5	NA
WR-371A	11/07/07	1.2	<0.5	<0.5	2.7	0.8	<0.5	NA
WR-371A	08/09/07	0.6	<0.5	<0.5	1.4	<0.5	<0.5	NA
WR-371A	05/17/07	1.3	<0.5	<0.5	3.4	1.1	<0.5	NA
WR-371A	02/21/07	1.2	<0.5	<0.5	3.3	1.0	<0.5	NA
WR-371A	02/21/07	1.2	<0.5	<0.5	3.2	1.0	<0.5	NA
WR-371A	11/09/06	1.7	<0.5	<0.5	4.2	1.4	<0.5	NA
WR-371A	08/21/06	1.4	<0.5	<0.5	4.1	1.3	<0.5	NA

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lead
	AWQS→		70	5	5	5	2	50
WR-371A	05/24/06	1.6	<0.5	<0.5	4.7	1.5	<0.5	NA
WR-371A	02/21/06	1.5	<0.5	<0.5	4.4	1.4	<0.5	<2
WR-371A	02/21/06	1.6	<0.5	<0.5	4.4	1.5	<0.5	<2
WR-371A	11/16/05	1.6	<0.5	<0.5	4.8	1.6	<0.5	NA
WR-371A	08/22/05	1.6	<0.5	<0.5	5.8	1.8	<0.5	NA
WR-371A	05/12/05	1.8	<0.5	<0.5	7.4	2.4	<0.5	NA
WR-371A	02/22/05	2.1	<0.5	<0.5	8.3	2.8	<0.5	NA
WR-371A	02/22/05	2.1	<0.5	<0.5	8.2	2.7	<0.5	NA
WR-371A	11/18/04	2.3	<0.5	<0.5	8.8	3.0	<0.5	NA
WR-371A	08/24/04	2.1	<0.5	<0.5	8.6	2.8	<0.5	NA
WR-371A	05/13/04	1.9	<0.5	<0.5	7.4	2.6	<0.5	NA
WR-371A	02/17/04	2.0	<0.5	<0.5	8.0	2.7	<0.5	NA
WR-371A	02/17/04	1.9	<0.5	<0.5	8.0	2.5	<0.5	NA
WR-371A	11/24/03	2.1	0.5	<0.5	9.4	3.3	<0.5	<2
WR-371A	08/19/03	1.9	<0.5	<0.5	8.6	2.8	<0.5	12.0
WR-371A	05/19/03	1.9	<0.5	<3	8.0	2.8	<0.5	<2
WR-371A	11/25/02	NA	<0.5	<3	7.3	2.4	<0.5	NA
WR-371A	10/17/02	NA NA	<0.5	<3				100,700,00
WR-371A	08/14/02	NA NA	<0.5		9.6	3.3	<0.5	NA
				<3	8.1	3.0	<0.5	NA
WR-371A	05/13/02	NA	<0.5	<3	6.2	2.3	<0.5	NA
WR-371A	02/11/02	NA NA	0.62	<3	9.1	3.1	<0.5	NA
WR-371A	11/15/01	NA	0.93	<3	9.5	3.6	<0.5	NA
WR-371A	08/23/01	NA	1.1	<3	13.0	4.7	<0.5	NA
WR-371A	07/13/01	NA	0.79	<3	15.0	6.0	<0.5	NA
WR-371A	06/12/01	NA	8.0	<1	16.0	7.7	<0.5	NA
WR-443A	11/19/15	0.9	<0.5	<0.5	2.2	0.6	<0.5	4.08
WR-443A	05/21/15	1	<0.5	<0.5	2.6	0.7	<0.5	NA
WR-443A	11/20/14	1.2	<0.5	<0.5	3.0	1.1	<0.5	2.2
WR-443A	05/22/14	0.9	<0.5	<0.5	2.1	0.7	<0.5	1.1
WR-443A	11/14/13	1.1	<0.5	<0.5	2.6	0.8	<0.5	<0.
WR-443A	05/23/13	0.9	<0.5	<0.5	1.9	0.7	<0.5	3.9
WR-443A	11/28/12	1.1	<0.5	<0.5	1.9	0.6	<0.5	5.6
WR-443A	05/17/12	<0.5	<0.5	<0.5	2.6	1	<0.5	3.8
WR-443A	11/17/11	1.3	<0.5	<0.5	2.8	1.1	<0.5	4.1
WR-443A	05/19/11	1.7	<0.5	<0.5	3.2	1.2	<0.5	4.6
WR-443A	11/15/10	1.8	<0.5	<0.5	3.8	1.4	<0.5	2.2
WR-443A	06/02/10	1.8	<0.5	<0.5	3.7	1.6	<0.5	4.0
WR-443A	11/09/09	2.5	<0.5	<0.5	4.4	2.0	<0.5	6.8
WR-443A	05/21/09	1.9	<0.5	<0.5	4.4	1.7	1,000,000	575/907
WR-443A	11/06/08	1.8					<0.5	7.6
OCCUPATION METALONIC IN	S2500A80010805.2.56000		<0.5	<0.5	4.1	1.9	<0.5	3.0
WR-443A	05/22/08	2.0	<0.5	<0.5	5.0	2.1	<0.5	<2
WR-443A	12/06/07	2.4	<0.5	<0.5	4.4	2.4	<0.5	NA
WR-443A	12/06/07	2.2	<0.5	<0.5	5.3	2.0	<0.5	NA 1.0
WR-443A	05/22/07	2.4	<0.5	<0.5	5.8	2.5	<0.5	4.3
WR-443A	11/14/06	3.0	<0.5	<0.5	6.0	3.0	<0.5	<2
WR-443A	05/30/06	2.2	<0.5	<0.5	5.0	2.4	<0.5	NA
WR-443A	11/29/05	2.2	<0.5	<0.5	4.7	2.3	<0.5	4.1
WR-443A	06/09/05	1.6	<0.5	<0.5	3.4	1.9	<0.5	3.4
WR-443A	06/09/05	2.2	< 0.5	< 0.5	5.1	2.7	< 0.5	5.4

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lea
	AWQS→		70	5	5	5	2	50
WR-443A	11/18/04	2.0	<0.5	<0.5	4.1	2.4	<0.5	3.3
WR-443A	05/13/04	2.7	<0.5	<0.5	4.9	2.8	<0.5	4.4
WR-443A	05/13/04	2.4	<0.5	<0.5	4.6	2.5	<0.5	8.1
WR-443A	11/24/03	2.5	<0.5	<0.5	4.8	2.6	<0.5	4.4
WR-443A	11/24/03	2.6	<0.5	<0.5	5.2	2.8	<0.5	4.3
WR-443A	05/15/03	2.8	<0.5	<0.5	6.4	3.6	<0.5	3.6
WR-443A	11/25/02	2.7	<0.5	<0.5	6.7	4.1	<0.5	2.6
WR-443A	08/14/02	2.4	<0.5	<0.5	7.0	4.2	<0.5	2.6
WR-443A	06/13/02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
WR-444A	11/16/15	0.7	<0.5	<0.5	1.2	<0.5	<0.5	N/
WR-444A	11/16/15	0.7	<0.5	<0.5	1.3	<0.5	<0.5	N/
WR-444A	08/18/15	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	N/
WR-444A	05/18/15	0.7	<0.5	<0.5	1.4	<0.5	<0.5	N/
WR-444A	02/09/15	0.7	<0.5	<0.5	1.3	<0.5	<0.5	N.
WR-444A	02/09/15	0.7	<0.5	<0.5	1.4	<0.5	<0.5	N.
WR-444A	11/17/14	0.8	<0.5	<0.5	1.4	<0.5	<0.5	N.
WR-444A	08/18/14	0.7	<0.5	<0.5	1.5	<0.5	<0.5	N.
WR-444A	05/19/14	0.7	<0.5	<0.5	1.5	0.5	<0.5	N.
WR-444A	02/10/14	1	<0.5	<0.5	1.8	0.6	<0.5	N.
WR-444A	11/12/13	0.9	<0.5	<0.5	1.5	0.5	<0.5	N.
The second secon	08/19/13	0.9	<0.5	<0.5	1.8	0.6	<0.5	N.
WR-444A	08/19/13	1	<0.5	<0.5	1.8	0.6	<0.5	N.
WR-444A			<0.5	<0.5	1.9	0.6	<0.5	N.
WR-444A	05/20/13	1	<0.5	<0.5	1.9	0.6	<0.5	N.
WR-444A	02/19/13	1	<0.5	<0.5	2	0.6	<0.5	N.
WR-444A	11/13/12	1.1		<0.5	2.3	0.0	<0.5	N.
WR-444A	08/21/12		<0.5	<0.5	2.3	0.7	<0.5	N.
WR-444A	05/14/12	1.1	<0.5				<0.5	N.
WR-444A	02/15/12	1	<0.5	<0.5	1.9	0.6	<0.5	N.
WR-444A	11/14/11	1.1	<0.5	<0.5	2.3	0.7	-	
WR-444A	11/14/11*	1.22	<0.5	<0.5	1.96	0.68	<0.5	N
WR-444A	08/22/11	1.1	<0.5	<0.5	2.3	0.7	<0.5	N
WR-444A	8/22/11*	1.26	<0.5	<0.5	2.07	0.82	<0.5	N
WR-444A	05/16/11	0.9	<0.5	<0.5	2	0.6	<0.5	N
WR-444A	02/22/11	1.2	<0.5	<0.5	2.5	0.8	<0.5	N
WR-444A	11/08/10	1.3	<0.5	<0.5	2.7	0.8	<0.5	N
WR-444A	08/24/10	1.2	<0.5	<0.5	2.6	0.9	<0.5	N.
WR-444A	06/02/10	1.2	<0.5	<0.5	2.6	0.9	<0.5	N.
WR-444A	02/22/10	1.1	<0.5	<0.5	2.7	1.0	<0.5	N.
WR-444A	02/22/10	1.2	<0.5	<0.5	2.8	0.9	<0.5	N.
WR-444A	11/03/09	1.2	<0.5	<0.5	3.0	1.0	<0.5	N.
WR-444A	05/18/09	1.0	<0.5	<0.5	2.7	0.9	<0.5	N.
WR-444A	02/24/09	1.2	<0.5	<0.5	3.4	1.1	<0.5	N.
WR-444A	02/24/09	1.2	<0.5	<0.5	3.3	1.1	<0.5	N.
WR-444A	11/04/08	1.4	<0.5	<0.5	3.2	1.2	<0.5	N.
WR-444A	08/18/08	1.4	<0.5	<0.5	3.7	1.4	<0.5	N
WR-444A	05/20/08	1.4	<0.5	<0.5	3.4	1.3	<0.5	N.
WR-444A	02/25/08	1.4	<0.5	<0.5	3.8	1.3	<0.5	N,
WR-444A	11/07/07	1.6	<0.5	<0.5	3.9	1.5	<0.5	N,
WR-444A	08/09/07	1.4	<0.5	<0.5	4.1	1.5	<0.5	N,

Table 3
Summary of Selected Groundwater Analytical Results
Harrison Road Landfill

Well ID	Sample Date	1-1 DCA	cDCE	Methylene Chloride	PCE	TCE	Vinyl Chloride	Lead
	$AWQS \rightarrow$	1000	70	5	5	5	2	50
WR-444A	08/09/07	1.4	<0.5	<0.5	3.5	1.4	<0.5	NA
WR-444A	05/17/07	1.5	<0.5	<0.5	3.8	1.4	<0.5	NA
WR-444A	02/21/07	1.6	<0.5	<0.5	3.6	1.4	<0.5	NA
WR-444A	11/09/06	1.6	<0.5	<0.5	3.7	1.6	<0.5	NA
WR-444A	11/09/06	1.6	<0.5	<0.5	3.6	1.5	<0.5	NA
WR-444A	08/21/06	1.4	<0.5	<0.5	3.1	1.4	<0.5	NA
WR-444A	08/21/06	1.4	<0.5	<0.5	3.3	1.4	<0.5	NA
WR-444A	05/24/06	1.1	<0.5	<0.5	1.9	1.0	<0.5	NA
WR-444A	02/21/06	1.3	<0.5	<0.5	3.1	1.3	<0.5	<2
WR-444A	11/16/05	1.4	<0.5	<0.5	3.2	1.3	<0.5	NA
WR-444A	08/22/05	1.1	<0.5	<0.5	2.9	1.2	<0.5	NA
WR-444A	05/11/05	1.0	<0.5	<0.5	2.8	1.1	<0.5	<2
WR-444A	02/22/05	1.2	<0.5	<0.5	3.1	1.3	<0.5	NA
WR-444A	11/17/04	1.4	<0.5	<0.5	3.1	1.3	<0.5	<2
WR-444A	08/24/04	1.2	<0.5	<0.5	3.1	1.2	<0.5	NA
WR-444A	08/24/04	1.2	<0.5	<0.5	3.0	1.2	<0.5	NA
WR-444A	05/12/04	1.4	<0.5	<0.5	3.1	1.3	<0.5	<2
WR-444A	02/17/04	1.3	<0.5	<0.5	3.6	1.5	<0.5	NA
WR-444A	11/24/03	1.3	<0.5	<0.5	4.0	1.7	<0.5	<2
WR-444A	08/19/03	1.1	<0.5	<0.5	3.5	1.6	<0.5	<2
WR-444A	08/19/03	1.1	<0.5	<0.5	3.6	1.6	<0.5	<2
WR-444A	05/19/03	1.0	<0.5	<0.5	3.3	1.6	<0.5	<2
WR-444A	05/19/03	1.0	<0.5	<0.5	3.3	1.4	<0.5	<2
WR-444A	11/25/02	<0.5	<0.5	<0.5	1.7	0.9	<0.5	<2
WR-444A	08/13/02	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	<2
WR-444A	06/13/02	1.7	<0.5	<0.5	4.6	2.9	<0.5	7.2
Notes:				cDCE = cis 1,2-D				
All results are reported in		liter (ug/L)		Methylene Chlori		Dichlorome	thane	
<0.5 = Not Detected above				PCE = Tetrachlor			L	
* - Duplicate sample anal			<u> </u>	TCE = Trichloroe			was field fi	Itered.
Bold Numbers exceed the	e associated Aqu	iter Water Qua	ality Standard	1-1 DCA = 1-1 Di	chioroethan	9		

Table 4
Relative Percent Difference (RPD) Between Original and Duplicate Groundwater Samples
Harrison Landfill

Login	Well ID	Sample Date	Parameter	Prefix	Result	Login	Well ID	Sample Date	Parameter	Prefix	Result	RPD
L151368-01	WR-120A	11/18/2015 9:40	1,1,1,2-TETRACHLOROETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,1,1,2-TETRACHLOROETHANE	<	0.0005	0.0%
	WR-120A	11/18/2015 9:40	1,1,1-TRICHLOROETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,1,1-TRICHLOROETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,1,2,2-TETRACHLOROETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,1,2,2-TETRACHLOROETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,1,2-TRICHLOROETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,1,2-TRICHLOROETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,1-DICHLOROETHANE		0.0007	L151368-02	WR-120A	11/18/2015 9:44	1,1-DICHLOROETHANE		0.0007	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,1-DICHLOROETHENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,1-DICHLOROETHENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,1-DICHLOROPROPENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,1-DICHLOROPROPENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,2,3-TRICHLOROBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,2,3-TRICHLOROBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,2,3-TRICHLOROPROPANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,2,3-TRICHLOROPROPANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,2,4-TRICHLOROBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,2,4-TRICHLOROBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,2,4-TRIMETHYLBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,2,4-TRIMETHYLBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,2-DIBROMO-3-CHLOROPROPANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,2-DIBROMO-3-CHLOROPROPANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,2-DICHLOROBENZENE	. <	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,2-DICHLOROBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,2-DICHLOROETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,2-DICHLOROETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,2-DICHLOROPROPANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,2-DICHLOROPROPANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,3,5-TRIMETHYLBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,3,5-TRIMETHYLBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,3-DICHLOROBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,3-DICHLOROBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,3-DICHLOROPROPANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,3-DICHLOROPROPANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	1,4-DICHLOROBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	1,4-DICHLOROBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	2,2-DICHLOROPROPANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	2,2-DICHLOROPROPANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	2-CHLOROTOLUENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	2-CHLOROTOLUENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	4-CHLOROTOLUENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	4-CHLOROTOLUENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	4-ISOPROPYLTOLUENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	4-ISOPROPYLTOLUENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	ALKALINITY, BICARBONATE		202	L151368-02	WR-120A	11/18/2015 9:44	ALKALINITY, BICARBONATE		199	1.5%
L151368-01	WR-120A	11/18/2015 9:40	ALKALINITY, TOTAL		202	L151368-02	WR-120A	11/18/2015 9:44	ALKALINITY, TOTAL		199	1.5%
L151368-01	WR-120A	11/18/2015 9:40	AMMONIA AS N	< .	0.05	L151368-02	WR-120A	11/18/2015 9:44	AMMONIA AS N	<	0.05	0.0%
L151368-01	WR-120A	11/18/2015 9:40	BARIUM		0.126	L151368-02	WR-120A	11/18/2015 9:44	BARIUM		0.344	92.8%
L151368-01	WR-120A	11/18/2015 9:40	BENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	BENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	BROMIDE		0.187	L151368-02	WR-120A	11/18/2015 9:44	BROMIDE		0.174	7.2%
L151368-01	WR-120A	11/18/2015 9:40	BROMOBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	BROMOBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	BROMOCHLOROMETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	BROMOCHLOROMETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	BROMODICHLOROMETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	BROMODICHLOROMETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	BROMOFORM	<	0.0005	L151368-02	1 A2008 A20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11/18/2015 9:44	BROMOFORM	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	BROMOMETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	BROMOMETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	CADMIUM	<	0.001	L151368-02	WR-120A	11/18/2015 9:44	CADMIUM	<	0.001	0.0%
L151368-01	WR-120A	11/18/2015 9:40	CALCIUM		61.5	L151368-02	WR-120A	11/18/2015 9:44	CALCIUM		66	7.1%
L151368-01	WR-120A	11/18/2015 9:40	CARBON TETRACHLORIDE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	CARBON TETRACHLORIDE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	CHLORIDE		12.4	L151368-02	WR-120A	11/18/2015 9:44	CHLORIDE		12.4	0.0%
L151368-01	WR-120A	11/18/2015 9:40	CHLOROBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	CHLOROBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	CHLOROETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	CHLOROETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	CHLOROFORM	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	CHLOROFORM	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	CHLOROMETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	CHLOROMETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	CHROMIUM	<	0.02	L151368-02	WR-120A	11/18/2015 9:44	CHROMIUM		0.0268	29.1%
L151368-01	WR-120A	11/18/2015 9:40	CIS-1,2-DICHLOROETHENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	CIS-1,2-DICHLOROETHENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	CIS-1,3-DICHLOROPROPENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	CIS-1,3-DICHLOROPROPENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	COBALT	<	0.02	L151368-02	WR-120A	11/18/2015 9:44	COBALT	<	0.02	0.0%
L151368-01	WR-120A	11/18/2015 9:40	COPPER	<	0.02	L151368-02	WR-120A	11/18/2015 9:44	COPPER		0.136	148.7%

Table 4
Relative Percent Difference (RPD) Between Original and Duplicate Groundwater Samples
Harrison Landfill

Login	Well ID	Sample Date	Parameter	Prefix	Result	Login	Well ID	Sample Date	Parameter	Prefix	Result	RPD
L151368-01	WR-120A	11/18/2015 9:40	DIBROMOCHLOROMETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	DIBROMOCHLOROMETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	DIBROMOMETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	DIBROMOMETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	DICHLORODIFLUOROMETHANE		0.0071	L151368-02	WR-120A	11/18/2015 9:44	DICHLORODIFLUOROMETHANE		0.0073	2.8%
L151368-01	WR-120A	11/18/2015 9:40	DICHLOROMETHANE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	DICHLOROMETHANE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	ETHYLBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	ETHYLBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	ETHYLENE DIBROMIDE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	ETHYLENE DIBROMIDE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	FLUORIDE		0.221	L151368-02	WR-120A	11/18/2015 9:44	FLUORIDE		0.231	4.4%
L151368-01	WR-120A	11/18/2015 9:40	HEXACHLOROBUTADIENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	HEXACHLOROBUTADIENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	IRON	<	0.02	L151368-02	WR-120A	11/18/2015 9:44	IRON	<	0.02	0.0%
L151368-01	WR-120A	11/18/2015 9:40	IRON		2.67	L151368-02	WR-120A	11/18/2015 9:44	IRON	Above N	30.2	167.5%
L151368-01	WR-120A	11/18/2015 9:40	ISOPROPYLBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	ISOPROPYLBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	LEAD		0.0093	L151368-02	WR-120A	11/18/2015 9:44	LEAD		0.331	189.1%
L151368-01	-	11/18/2015 9:40	M/P-XYLENES	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	M/P-XYLENES	<	0.0005	0.0%
L151368-01		11/18/2015 9:40	MAGNESIUM		7.37	L151368-02	WR-120A	11/18/2015 9:44	MAGNESIUM		7.69	4.2%
L151368-01		11/18/2015 9:40	MANGANESE	<	0.02	L151368-02	WR-120A	11/18/2015 9:44	MANGANESE	<	0.02	0.0%
L151368-01		11/18/2015 9:40	MANGANESE		0.0469	L151368-02	WR-120A	11/18/2015 9:44	MANGANESE		1.33	186.4%
L151368-01		11/18/2015 9:40	METHYL-TERT-BUTYL ETHER	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	METHYL-TERT-BUTYL ETHER	<	0.0005	0.0%
L151368-01		11/18/2015 9:40	NAPHTHALENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	NAPHTHALENE	<	0.0005	0.0%
L151368-01	30,000,000	11/18/2015 9:40	N-BUTYLBENZENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	N-BUTYLBENZENE	<	0.0005	0.0%
L151368-01		11/18/2015 9:40	NICKEL	<	0.02	L151368-02	WR-120A	11/18/2015 9:44	NICKEL		0.0239	17.8%
L151368-01		11/18/2015 9:40	NITRATE AS N		1.33	L151368-02		11/18/2015 9:44	NITRATE AS N		1.33	0.0%
L151368-01		11/18/2015 9:40	NITRITE AS N	<	0.1	L151368-02		11/18/2015 9:44	NITRITE AS N	<	0.1	0.0%
		11/18/2015 9:40	N-PROPYLBENZENE	<	0.0005	L151368-02		11/18/2015 9:44	N-PROPYLBENZENE	<	0.0005	0.0%
	WR-120A	11/18/2015 9:40	ORTHO PHOSPHATE AS P	<	0.2	L151368-02	1000,000,000,000,000,000,000,000,000	11/18/2015 9:44	ORTHO PHOSPHATE AS P	<	0.2	0.0%
	WR-120A	11/18/2015 9:40	ORTHO-XYLENE	<	0.0005	L151368-02		11/18/2015 9:44	ORTHO-XYLENE	<	0.0005	0.0%
	WR-120A	11/18/2015 9:40	POTASSIUM	+	1.54	L151368-02		11/18/2015 9:44	POTASSIUM		1.57	1.9%
L151368-01	WR-120A	11/18/2015 9:40	SEC-BUTYLBENZENE	<	0.0005	L151368-02		11/18/2015 9:44	SEC-BUTYLBENZENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	SODIUM		21.5	L151368-02	WR-120A	11/18/2015 9:44	SODIUM		21.6	0.5%
L151368-01	WR-120A	11/18/2015 9:40	STYRENE	<	0.0005	L151368-02	WR-120A	11/18/2015 9:44	STYRENE	<	0.0005	0.0%
L151368-01	WR-120A	11/18/2015 9:40	SULFATE		11.1	L151368-02		11/18/2015 9:44	SULFATE		11	-0.9%
L151368-01	WR-120A	11/18/2015 9:40	TERT-BUTYLBENZENE	<	0.0005	L151368-02		11/18/2015 9:44	TERT-BUTYLBENZENE	<	0.0005	0.0%
		11/18/2015 9:40	TETRACHLOROETHENE		0.001	L151368-02		11/18/2015 9:44	TETRACHLOROETHENE		0.0011	9.5%
L151368-01		11/18/2015 9:40	TOLUENE	<	0.0005	L151368-02		11/18/2015 9:44	TOLUENE	<	0.0005	0.0%
L151368-01		11/18/2015 9:40	TOTAL DISSOLVED SOLIDS		255	L151368-02	1. J. 77 (1994) 64 (1994) 1994 (1994)	11/18/2015 9:44	TOTAL DISSOLVED SOLIDS	-	256	0.4%
L151368-01		11/18/2015 9:40	TOTAL TRIHALOMETHANES	<	0.0005	L151368-02		11/18/2015 9:44	TOTAL TRIHALOMETHANES	<	0.0005	0.0%
L151368-01		11/18/2015 9:40	TRANS-1,2-DICHLOROETHENE	<	0.0005	L151368-02		11/18/2015 9:44	TRANS-1,2-DICHLOROETHENE	<	0.0005	0.0%
L151368-01		11/18/2015 9:40	TRANS-1,3-DICHLOROPROPENE	<	0.0005	L151368-02	CT Transfer and Transfer against	11/18/2015 9:44	TRANS-1.3-DICHLOROPROPENE	<	0.0005	0.0%
L151368-01		11/18/2015 9:40	TRICHLOROETHENE	-	0.0005	L151368-02		11/18/2015 9:44	TRICHLOROETHENE	-	0.0005	0.0%
L151368-01	MATERIANA	11/18/2015 9:40	TRICHLOROFLUOROMETHANE	<	0.0005	L151368-02		11/18/2015 9:44	TRICHLOROFLUOROMETHANE	<	0.0005	0.0%
L151368-01		11/18/2015 9:40	VANADIUM	<	0.0003	L151368-02		11/18/2015 9:44	VANADIUM	-	0.0003	0.0%
L151368-01		11/18/2015 9:40	VINYL CHLORIDE	<	0.0005	L151368-02		11/18/2015 9:44	VINYL CHLORIDE	<	0.0005	0.0%
L151368-01		11/18/2015 9:40	XYLENES (TOTAL)	<	0.0005	L151368-02		11/18/2015 9:44	XYLENES (TOTAL)	 	0.0005	0.0%
L151368-01		11/18/2015 9:40	ZINC		0.0003	L151368-02		11/18/2015 9:44	ZINC		23.1	193.2%
L 13 1306-01	VVIX-12UA	1	LINO		0.4	L 13 1300-02						
L151001-05	WR-285A	8/18/2015 12:02	1,1,1,2-TETRACHLOROETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,1,1,2-TETRACHLOROETHANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,1,1-TRICHLOROETHANE	< .	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,1,1-TRICHLOROETHANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,1,2,2-TETRACHLOROETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,1,2,2-TETRACHLOROETHANE	<	0.0005	0.0%

Table 4
Relative Percent Difference (RPD) Between Original and Duplicate Groundwater Samples
Harrison Landfill

Login	Well ID	Sample Date	Parameter	Prefix	Result	Login	Well ID	Sample Date	Parameter	Prefix	Result	RPD
L151001-05	WR-285A	8/18/2015 12:02	1,1,2-TRICHLOROETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,1,2-TRICHLOROETHANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,1-DICHLOROETHANE		0.0007	L151001-06	WR-285A	8/18/2015 12:06	1,1-DICHLOROETHANE		0.0007	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,1-DICHLOROETHENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,1-DICHLOROETHENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,1-DICHLOROPROPENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,1-DICHLOROPROPENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,2,3-TRICHLOROBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,2,3-TRICHLOROBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,2,3-TRICHLOROPROPANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,2,3-TRICHLOROPROPANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,2,4-TRICHLOROBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,2,4-TRICHLOROBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,2,4-TRIMETHYLBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,2,4-TRIMETHYLBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,2-DIBROMO-3-CHLOROPROPANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,2-DIBROMO-3-CHLOROPROPANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,2-DICHLOROBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,2-DICHLOROBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,2-DICHLOROETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,2-DICHLOROETHANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,2-DICHLOROPROPANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,2-DICHLOROPROPANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,3,5-TRIMETHYLBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,3,5-TRIMETHYLBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,3-DICHLOROBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,3-DICHLOROBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,3-DICHLOROPROPANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,3-DICHLOROPROPANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	1,4-DICHLOROBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	1,4-DICHLOROBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	2,2-DICHLOROPROPANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	2,2-DICHLOROPROPANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	2-CHLOROTOLUENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	2-CHLOROTOLUENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	4-CHLOROTOLUENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	4-CHLOROTOLUENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	4-ISOPROPYLTOLUENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	4-ISOPROPYLTOLUENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	BENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	BENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	BROMOBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	BROMOBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	BROMOCHLOROMETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	BROMOCHLOROMETHANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	BROMODICHLOROMETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	BROMODICHLOROMETHANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	BROMOFORM	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	BROMOFORM	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	BROMOMETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	BROMOMETHANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	CARBON TETRACHLORIDE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	CARBON TETRACHLORIDE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	CHLOROBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	CHLOROBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	CHLOROETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	CHLOROETHANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	CHLOROFORM	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	CHLOROFORM	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	CHLOROMETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	CHLOROMETHANE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	CIS-1,2-DICHLOROETHENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	CIS-1,2-DICHLOROETHENE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	CIS-1,3-DICHLOROPROPENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	CIS-1,3-DICHLOROPROPENE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	DIBROMOCHLOROMETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	DIBROMOCHLOROMETHANE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	DIBROMOMETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	DIBROMOMETHANE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	DICHLORODIFLUOROMETHANE		0.009	L151001-06	WR-285A	8/18/2015 12:06	DICHLORODIFLUOROMETHANE		0.009	0.0%
L151001-05		8/18/2015 12:02	DICHLOROMETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	DICHLOROMETHANE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	ETHYLBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	ETHYLBENZENE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	ETHYLENE DIBROMIDE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	ETHYLENE DIBROMIDE	-	0.0005	0.0%
L151001-05		8/18/2015 12:02	HEXACHLOROBUTADIENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	HEXACHLOROBUTADIENE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	ISOPROPYLBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	ISOPROPYLBENZENE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	M/P-XYLENES	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	M/P-XYLENES	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	METHYL-TERT-BUTYL ETHER	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	METHYL-TERT-BUTYL ETHER	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	NAPHTHALENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	NAPHTHALENE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	N-BUTYLBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	N-BUTYLBENZENE	<	0.0005	0.0%
L151001-05	-	8/18/2015 12:02	N-PROPYLBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	N-PROPYLBENZENE	<	0.0005	0.0%
L151001-05	Destroy of the Control of the Control	8/18/2015 12:02	ORTHO-XYLENE	<	0.0005		WR-285A	8/18/2015 12:06	ORTHO-XYLENE	<	0.0005	-1-1-
L 15 100 1-05	WK-203A	10/10/2013 12.02	TOKTHO-XTLENE		0.0003	L131001-06	VVK-203A	0/10/2013 12.06	OKTHO-ATLENE	_ `	0.0005	0.0%

Table 4
Relative Percent Difference (RPD) Between Original and Duplicate Groundwater Samples
Harrison Landfill

Login	Well ID	Sample Date	Parameter	Prefix	Result	Login	Well ID	Sample Date	Parameter	Prefix	Result	RPD
L151001-05	WR-285A	8/18/2015 12:02	SEC-BUTYLBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	SEC-BUTYLBENZENE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	STYRENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	STYRENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	TERT-BUTYLBENZENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	TERT-BUTYLBENZENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	TETRACHLOROETHENE		0.0009	L151001-06	WR-285A	8/18/2015 12:06	TETRACHLOROETHENE		0.001	10.5%
L151001-05	WR-285A	8/18/2015 12:02	TOLUENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	TOLUENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	TOTAL TRIHALOMETHANES	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	TOTAL TRIHALOMETHANES	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	TRANS-1,2-DICHLOROETHENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	TRANS-1,2-DICHLOROETHENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	TRANS-1,3-DICHLOROPROPENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	TRANS-1,3-DICHLOROPROPENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	TRICHLOROETHENE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	TRICHLOROETHENE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	TRICHLOROFLUOROMETHANE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	TRICHLOROFLUOROMETHANE	<	0.0005	0.0%
L151001-05	WR-285A	8/18/2015 12:02	VINYL CHLORIDE	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	VINYL CHLORIDE	<	0.0005	0.0%
L151001-05		8/18/2015 12:02	XYLENES (TOTAL)	<	0.0005	L151001-06	WR-285A	8/18/2015 12:06	XYLENES (TOTAL)	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,1,1,2-TETRACHLOROETHANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,1,1,2-TETRACHLOROETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,1,1-TRICHLOROETHANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,1,1-TRICHLOROETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,1,2,2-TETRACHLOROETHANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,1,2,2-TETRACHLOROETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,1,2-TRICHLOROETHANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,1,2-TRICHLOROETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,1-DICHLOROETHANE		0.0007	L151355-02	WR-444A	11/16/2015 11:48	1,1-DICHLOROETHANE		0.0007	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,1-DICHLOROETHENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,1-DICHLOROETHENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,1-DICHLOROPROPENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,1-DICHLOROPROPENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,2,3-TRICHLOROBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,2,3-TRICHLOROBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,2,3-TRICHLOROPROPANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,2,3-TRICHLOROPROPANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,2,4-TRICHLOROBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,2,4-TRICHLOROBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,2,4-TRIMETHYLBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,2,4-TRIMETHYLBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,2-DIBROMO-3-CHLOROPROPANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,2-DIBROMO-3-CHLOROPROPANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,2-DICHLOROBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,2-DICHLOROBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,2-DICHLOROETHANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,2-DICHLOROETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,2-DICHLOROPROPANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,2-DICHLOROPROPANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,3,5-TRIMETHYLBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,3,5-TRIMETHYLBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,3-DICHLOROBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,3-DICHLOROBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,3-DICHLOROPROPANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,3-DICHLOROPROPANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	1,4-DICHLOROBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	1,4-DICHLOROBENZENE	<	0.0005	0.0%
L151355-01		11/16/2015 11:45	2.2-DICHLOROPROPANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	2,2-DICHLOROPROPANE	<	0.0005	0.0%
L151355-01	1000 F. A. S. SERVER P. A. S.	11/16/2015 11:45	2-CHLOROTOLUENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	2-CHLOROTOLUENE	<	0.0005	0.0%
L151355-01		11/16/2015 11:45	4-CHLOROTOLUENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	4-CHLOROTOLUENE	<	0.0005	0.0%
L151355-01		11/16/2015 11:45	4-ISOPROPYLTOLUENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	4-ISOPROPYLTOLUENE	<	0.0005	0.0%
L151355-01		11/16/2015 11:45	BENZENE	<	0.0005	L151355-02	300000000000000000000000000000000000000	11/16/2015 11:48	BENZENE	<	0.0005	0.0%
L151355-01		11/16/2015 11:45	BROMOBENZENE	<	0.0005	L151355-02		11/16/2015 11:48	BROMOBENZENE	<	0.0005	0.0%
L151355-01	STANCE STANCE STANCE	11/16/2015 11:45	BROMOCHLOROMETHANE	<	0.0005	L151355-02		11/16/2015 11:48	BROMOCHLOROMETHANE	<	0.0005	0.0%
L151355-01		11/16/2015 11:45	BROMODICHLOROMETHANE	<	0.0005	L151355-02		11/16/2015 11:48	BROMODICHLOROMETHANE	<	0.0005	0.0%
	WR-444A	11/16/2015 11:45	BROMOFORM	<	0.0005	L151355-02		11/16/2015 11:48	BROMOFORM	<	0.0005	0.0%
	WR-444A	11/16/2015 11:45	BROMOMETHANE	<	0.0005	L151355-02	170.00×1077	11/16/2015 11:48	BROMOMETHANE	<	0.0005	0.0%
	WR-444A	11/16/2015 11:45	CARBON TETRACHLORIDE	<	0.0005	L151355-02		11/16/2015 11:48	CARBON TETRACHLORIDE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	CHLOROBENZENE	<	0.0005	L151355-02		11/16/2015 11:48	CHLOROBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	CHLOROETHANE	<	0.0005	L151355-02		11/16/2015 11:48	CHLOROETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	CHLOROFORM	<	0.0005	L151355-02		11/16/2015 11:48	CHLOROFORM	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	CHLOROMETHANE	<	0.0005	L151355-02	100000000 03 6000000	11/16/2015 11:48	CHLOROMETHANE	<	0.0005	0.0%

Table 4
Relative Percent Difference (RPD) Between Original and Duplicate Groundwater Samples
Harrison Landfill

Login	Well ID	Sample Date	Parameter	Prefix	Result	Login	Well ID	Sample Date	Parameter	Prefix	Result	RPD
L151355-01	WR-444A	11/16/2015 11:45	CIS-1,2-DICHLOROETHENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	CIS-1,2-DICHLOROETHENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	CIS-1,3-DICHLOROPROPENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	CIS-1,3-DICHLOROPROPENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	DIBROMOCHLOROMETHANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	DIBROMOCHLOROMETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	DIBROMOMETHANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	DIBROMOMETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	DICHLORODIFLUOROMETHANE		0.0088	L151355-02	WR-444A	11/16/2015 11:48	DICHLORODIFLUOROMETHANE		0.009	2.2%
L151355-01	WR-444A	11/16/2015 11:45	DICHLOROMETHANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	DICHLOROMETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	ETHYLBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	ETHYLBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	ETHYLENE DIBROMIDE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	ETHYLENE DIBROMIDE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	HEXACHLOROBUTADIENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	HEXACHLOROBUTADIENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	ISOPROPYLBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	ISOPROPYLBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	M/P-XYLENES	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	M/P-XYLENES	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	METHYL-TERT-BUTYL ETHER	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	METHYL-TERT-BUTYL ETHER	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	NAPHTHALENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	NAPHTHALENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	N-BUTYLBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	N-BUTYLBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	N-PROPYLBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	N-PROPYLBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	ORTHO-XYLENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	ORTHO-XYLENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	SEC-BUTYLBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	SEC-BUTYLBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	STYRENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	STYRENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	TERT-BUTYLBENZENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	TERT-BUTYLBENZENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	TETRACHLOROETHENE		0.0012	L151355-02	WR-444A	11/16/2015 11:48	TETRACHLOROETHENE		0.0013	8.0%
L151355-01	WR-444A	11/16/2015 11:45	TOLUENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	TOLUENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	TOTAL TRIHALOMETHANES	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	TOTAL TRIHALOMETHANES	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	TRANS-1,2-DICHLOROETHENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	TRANS-1,2-DICHLOROETHENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	TRANS-1,3-DICHLOROPROPENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	TRANS-1,3-DICHLOROPROPENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	TRICHLOROETHENE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	TRICHLOROETHENE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	TRICHLOROFLUOROMETHANE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	TRICHLOROFLUOROMETHANE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	VINYL CHLORIDE	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	VINYL CHLORIDE	<	0.0005	0.0%
L151355-01	WR-444A	11/16/2015 11:45	XYLENES (TOTAL)	<	0.0005	L151355-02	WR-444A	11/16/2015 11:48	XYLENES (TOTAL)	<	0.0005	0.0%

Table 5 Ground Water Extraction and Injection Data Harrison Road Landfill

Well ID	Starting Date	Ending Date	No. Days Well Off	Initial Flow Meter reading (gallons)	Final Flow Meter Reading (gallons)	Gallons Treated	Average Flow Rate (gpm)	Meter Notes	Comments
				July	2015				
SYSTEM INLET	7/1/2015	7/31/2015	1	228,066,200	229,231,800	1,165,600	27.9	Add a 2 to start of meter reading	
WR-371A	7/1/2015	7/31/2015	1	137,487,900	137,896,500	408,600	9.7	Add a 1 to start of meter reading	
WR-285A	7/1/2015	7/31/2015	31	37,465,700	37,465,700	0	0.0		The well was shut off in February 2013 due to declining water levels and VOC recovery rates
WR-444A	7/1/2015	7/31/2015	0	NA	NA	757,000	17.5		
WR-119A	7/1/2015	7/31/2015	0	13,590,610	14,844,000	1,253,390	29.0	Add a 1 to start of reading	
WR-245A	7/1/2015	7/31/2015	0	16,879,050	16,888,190	9,140	0.2	Add a 1 to start of reading	
WR-120A	7/1/2015	7/31/2015	31	58,476,960	58,476,960	0	0.0	Add a 5 to start of meter reading	
R-097A	7/1/2015	7/31/2015	31	1,912,440	1,912,440	0	0.0	Add a 1 to start of meter reading	
R-095A	7/1/2015	7/31/2015	31	24,360,220	24,360,220	0	0.0	Add a 2 to start of meter reading	
WR-276A	7/1/2015	7/31/2015	31	14,712,300	14,712,300	0	0.0	Add a 1 to start of meter reading	the well was shut down in January 2015 due to vandalism
				Augu	st 2015				
SYSTEM INLET	8/1/2015	8/31/2015	6	229,231,800	230,165,900	934,100	27.0	Add a 2 to start of meter reading	
WR-371A	8/1/2015	8/31/2015	7	137,896,500	138,220,800	324,300	9.8	Add a 1 to start of meter reading	
WR-285A	8/1/2015	8/31/2015	30	37,465,700	37,465,700	0	#DIV/0!		The well was shut off in February 2013 due to declining water levels and VOC recovery rates
WR-444A	8/1/2015	8/31/2015	7	NA	NA	609,800	18.4		
WR-119A	8/1/2015	8/31/2015	0	14,844,000	15,603,650	759,650	17.6	Add a 1 to start of reading	
WR-245A	8/1/2015	8/31/2015	0	16,888,190	17,070,670	182,480	4.2	Add a 1 to start of reading	
WR-120A	8/1/2015	8/31/2015	30	58,476,960	58,476,960	0	0.0	Add a 5 to start of meter reading	
R-097A	8/1/2015	8/31/2015	30	1,912,440	1,912,440	0	0.0	Add a 1 to start of meter reading	
R-095A	8/1/2015	8/31/2015	30	24,360,220	24,360,220	0	0.0	Add a 2 to start of meter reading	
WR-276A	8/1/2015	8/31/2015	30	14,712,300	14,712,300	0	#DIV/0!	Add a 1 to start of meter reading	the well was shut down in January 2015 du to vandalism

Table 5 Ground Water Extraction and Injection Data Harrison Road Landfill

Well ID	Starting Date	Ending Date	No. Days Well Off	Initial Flow Meter reading (gallons)	Final Flow Meter Reading (gallons)	Gallons Treated	Average Flow Rate (gpm)	Meter Notes	Comments
				Septem	nber 2015				
SYSTEM INLET	9/1/2015	9/30/2015	0	230,165,900	231,219,600	1,053,700	25.2	Add a 2 to start of meter reading	
WR-371A	9/1/2015	9/30/2015	0	138,220,800	138,595,000	374,200	9.0	Add a 1 to start of meter reading	
WR-285A	9/1/2015	9/30/2015	30	37,465,700	37,465,700	0	0.0		The well was shut off in February 2013 due to declining water levels and VOC recovery rates
WR-444A	9/1/2015	9/30/2015	0	NA	NA	679,500	16.3		
WR-119A	9/1/2015	9/30/2015	0	15,603,650	16,452,840	849,190	20.3	Add a 1 to start of reading	
WR-245A	9/1/2015	9/30/2015	0	17,070,670	17,237,380	166,710	4.0	Add a 1 to start of reading	
WR-120A	9/1/2015	9/30/2015	30	58,476,960	58,476,960	0	0.0	Add a 5 to start of meter reading	
R-097A	9/1/2015	9/30/2015	30	1,912,440	1,912,440	0	0.0	Add a 1 to start of meter reading	
R-095A	9/1/2015	9/30/2015	30	24,360,220	24,360,220	0	0.0	Add a 2 to start of meter reading	
WR-276A	9/1/2015	9/30/2015	30	14,712,300	14,712,300	0	0.0	Add a 1 to start of meter reading	the well was shut down in January 2015 due to vandalism
	-			Octob	per 2015				
SYSTEM INLET	10/1/2015	10/31/2015	0	231,219,600	232,193,200	973,600	22.5	Add a 2 to start of meter reading	
WR-371A	10/1/2015	10/31/2015	3	138,595,000	138,942,000	347,000	8.9	Add a 1 to start of meter reading	8
WR-285A	10/1/2015	10/31/2015	31	37,465,700	37,465,700	0	0.0		The well was shut off in February 2013 due to declining water levels and VOC recovery rates
WR-444A	10/1/2015	10/31/2015	0	NA	NA	626,600	14.5		
WR-119A	10/1/2015	10/31/2015	0	16,452,840	17,434,000	981,160	22.7	Add a 1 to start of reading	
WR-245A	10/1/2015	10/31/2015	0	17,237,380	17,345,900	108,520	2.5	Add a 1 to start of reading	
WR-120A	10/1/2015	10/31/2015	31	58,476,960	58,476,960	0	0.0	Add a 5 to start of meter reading	
R-097A	10/1/2015	10/31/2015	31	1,912,440	1,912,440	0	0.0	Add a 1 to start of meter reading	
R-095A	10/1/2015	10/31/2015	31	24,360,220	24,360,220	0	0.0	Add a 2 to start of meter reading	
WR-276A	10/1/2015	10/31/2015	31	14,712,300	14,712,300	0	0.0	Add a 1 to start of meter reading	the well was shut down in January 2015 due to vandalism

Table 5
Ground Water Extraction and Injection Data
Harrison Road Landfill

Well ID	Starting Date	Ending Date	No. Days Well Off	Initial Flow Meter reading (gallons)	Final Flow Meter Reading (gallons)	Gallons Treated	Average Flow Rate (gpm)	Meter Notes	Comments
			0 0	Novem	ber 2015				
SYSTEM INLET	11/1/2015	11/30/2015	0	232,193,200	233,313,060	1,119,860	26.8	Add a 2 to start of meter reading	
WR-371A	11/1/2015	11/30/2015	0	138,942,000	139,344,120	402,120	9.6	Add a 1 to start of meter reading	
WR-285A	11/1/2015	11/30/2015	29	37,465,700	37,465,700	0	0.0		The well was shut off in February 2013 due to declining water levels and VOC recovery rates
WR-444A	11/1/2015	11/30/2015	0	N/A	N/A	717,740	17.2		
WR-119A	11/1/2015	11/30/2015	0	17,434,000	18,500,040	1,066,040	25.5	Add a 1 to start of reading	
WR-245A	11/1/2015	11/30/2015	0	17,345,900	17,478,040	132,140	3.2	Add a 1 to start of reading	
WR-120A	11/1/2015	11/30/2015	29	58,476,960	58,476,960	0	0.0	Add a 5 to start of meter reading	
R-097A	11/1/2015	11/30/2015	29	1,912,440	1,912,440	0	0.0	Add a 1 to start of meter reading	
R-095A	11/1/2015	11/30/2015	29	24,360,220	24,360,220	0	0.0	Add a 2 to start of meter reading	
WR-276A	11/1/2015	11/30/2015	0	14,712,300	14,712,300	0	0.0	Add a 1 to start of meter reading	the well was shut down in January 2015 due to vandalism
				Decem	ber 2015				i.
SYSTEM INLET	12/1/2015	12/31/2015	7	233,313,060	234,042,600	729,540	22.0	Add a 2 to start of meter reading	
WR-371A	12/1/2015	12/31/2015	7	139,344,120	139,620,800	276,680	8.4	Add a 1 to start of meter reading	
WR-285A	12/1/2015	12/31/2015	30	37,465,700	37,497,400	31,700	#DIV/0!		The well was shut off in February 2013 due to declining water levels and VOC recovery rates
WR-444A	12/1/2015	12/31/2015	7	N/A		421,160	12.7		
WR-119A	12/1/2015	12/31/2015	11	18,500,040	19,082,450	582,410	21.3	Add a 1 to start of reading	
WR-245A	12/1/2015	12/31/2015	11	17,478,040	17,562,380	84,340	3.1	Add a 1 to start of reading	
WR-120A	12/1/2015	12/31/2015	31	58,476,960	58,476,960	0	0.0	Add a 5 to start of meter reading	
R-097A	12/1/2015	12/31/2015	31	1,912,440	1,912,440	0	0.0	Add a 1 to start of meter reading	9
R-095A	12/1/2015	12/31/2015	31	24,360,220	24,360,220	0	0.0	Add a 2 to start of meter reading	
WR-276A	12/1/2015	12/31/2015	31	14,712,300	14,712,300	0	0.0	Add a 1 to start of meter reading	the well was shut down in January 2015 due to vandalism

Table 6
Summary of Well Extraction and Injection Volumes
Harrison Road Landfill

			First Hal	f 2015	and the same and the same and					Second Hal	f 2015		
COT ID	ADWR ID	January	February	March	April	May	June	July	August	September	October	November	December
			Extraction	n Wells					E	xtraction Wells			
WR-371A	55-584020	176,000	398,800	385,200	254,500	436,800	146,500	408,600	324,300	374,200	347,000	402,120	276,680
WR-285A	55-563006	350	7	11.7	176	-	-	=	-	-	-	2	31,700
WR-444A	55-591332	256,500	571,900	660,900	432,200	732,700	307,600	757,000	609,800	679,500	626,600	717,740	421,160
Total Gallons	Extracted	432,500	970,700	1,046,100	686,700	1,169,500	454,100	1165600	934100	1053700	973600	1119860	729540
Acre-Feet Ex	tracted	1.33	2.98	3.21	2.11	3.59	1.39	3.58	2.87	3.23	2.99	3.44	2.24
			Injection	Wells						Injection Wells			
R-095A	55-583809	-	-	-	-	-	-	-	-	2	-	2	-
R-097A	55-587885	(-)	E		-	-	-	-	-				
WR-120A	55-518659	50		6.20	121	©	12	2	-	12	-	2	- U
WR-119A	55-518658	152950	838860	890270	616570	1102510	317180	1,253,390	759,650	849,190	981,160	1,066,040	582,410
WR-245A	55-551804	90280	175120	197030	101250	114010	141910	9,140	182,480	166,710	108,520	132,140	84,340
WR-276A	55-561733	165420	0	0	0	0	0	0	0	0	0	0	
Total Gallons	Injected	408700	1013980	1087300	717820	1216520	459090	1262530	942130	1015900	1089680	1198180	666750
Acre-Feet In	ected	1.25	3.11	3.34	2.20	3.73	1.41	3.87	2.89	3,12	3.34	3.68	2.08

Semiannual Total Extracted (Gal)	4,759,600
Semiannual Total Extracted (AF)	14.61

Semiannual Total Extracted (Gal)

Semiannual Total Extracted (AF)

18.34

Totals from WR-371A and WR-285A are reported to the Arizona State Land Department monthly

Totals from WR-371A and WR-285A are reported to the Arizona State Land Department monthly

Table 7 Mass Removed Extraction Well WR-444A Harrison Road Landfill

	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A
Period	09/01/09	11/30/10	03/01/10	06/01/10	08/31/10	12/1/2010	3/2/11	5/31/11	9/1/11	12/1/11	3/1/12	5/31/12	9/1/12	12/31/12	3/1/13	6/1/13	9/1/13	12/31/13	3/1/14	6/1/14	9/1/14	1/1/15	4/1/15	7/1/15	10/1/15
	to 11/30/09	to 3/1/2010	to 6/1/10	to 8/31/10	to 12/1/10	to 3/2/11	to 5/31/11	to 9/1/11	to 12/1/11	to 3/1/12	to 5/31/12	to 9/1/12	to 12/31/12	to 3/1/13	to 6/1/13	to 9/1/13	to 12/31/13	to 2/28/14	to 5/31/14	to 9/1/14	to 12/31/14	to 3/31/15	to 6/30/15	to 9/30/15	to 12/31/15
Sample Date	11/03/09	02/22/10	06/02/10	08/24/10	11/08/10	02/22/11	05/16/11	08/22/11	11/14/11	02/15/12	05/14/12	08/21/12	11/13/12	2/19/13	5/20/13	8/19/13	11/12/13	2/10/14	5/19/14	8/18/14	11/17/14	2/19/15	5/18/15	8/18/15	11/16/15
Analytical Result (ug/L)									,							,									
1,1-Dichloroethane (1-1,DCA)	1.2	1.2	1.2	1.2	1.3	1.2	0.9	1.1	1.1	1	1.1	1.1	1	1	1	0.9	0.9	1	0.7	0.7	0.8	0.7	0.7	0.7	0.7
1,1-Dichloroethene (1-1,DCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethene (c-DCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (Freon 12)	19.6	20.6	19.6	20.8	17.3	15.1	14.1	21.9	14.6	13.8	15.9	10.8	12.8	13.4	11.8	12.9	11	12.5	11.8	10.3	9.4	8.7	9.3	10.1	8.8
Methylene chloride	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene (PCE)	3	2.8	2.6	2.6	2.7	2.5	2	2.3	2.3	1.9	2.1	2.3	2	1.9	1.9	1.8	1.5	1.8	1.5	1.5	1.4	1.4	1.4	1.3	1.2
Trichloroethylene (TCE)	1.0	1.0	0.9	0.9	0.9	0.8	0.6	0.7	0.7	0.6	0.7	0.7	0.6	0.6	0.6	0.6	0.5	0.6	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane (Freon 11)	8.0	0.9	0.8	0.8	0.8	0.7	0.7	1.1	0.6	0.8	0.6	0.6	0.5	<0.5	0.6	<0.5	0.7	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total VOCs (ug/L)	25.6	26.5	25.1	26.3	23	20.3	18.3	27.1	19.3	18.1	20.4	15.5	16.9	16.9	15.9	16.2	14.6	16.4	14.5	12.5	11.6	10.8	11.4	12.1	10.7
Total Non-Freons (ug/L)	5.2	5.0	4.7	4.7	4.9	4.5	3.5	4.1	4.1	3.5	3.9	4.1	3.6	3.5	3.5	3.3	2.9	3.4	2.7	2.2	2.2	2.1	2.1	2	1.9
Total Freons (ug/L)	20.4	21.5	20.4	21.6	18.1	15.8	14.8	23	15.2	14.6	16.5	11.4	13.3	13.4	12.4	12.9	11.7	13	11.8	10.3	9.4	8.7	9.3	10.1	8.8
Flow Conditions							T	T														T	Т		$\overline{}$
Volume Extracted (gallons):	2,877,500	3,925,800	3,640,200	3,184,300	3,370,000	2,825,420	3,318,200	3,025,900	2,754,700	2.645.700	2,546,700	2,523,600	2.225,300	1,512,300	2,127,300	2,150,900	2,713,100	1,318,350	2.003.400	1.868.900	2.583.300	1,489,300	1,472,500	2.046.300	1.765.500
Volume Extracted (ganons):	2,017,000	0,020,000	0,040,200	0,104,000	0,070,000	2,020,420	0,010,200	0,020,000	2,704,700	2,040,700	2,040,700	2,020,000	2,220,000	1,012,000	2,127,000	2,100,000	2,710,100	1,010,000	2,000,400	1,000,000	1 2,000,000	1,100,000	1,172,000	2,010,000	1,700,000
Mass Removed During Period																									
TOTAL VOCS (pounds):	0.61	0.87	0.76	0.70	0.65	0.48	0.51	0.68	0.44	0.40	0.43	0.33	0.31	0.21	0.28	0.29	0.33	0.18	0.24	0.19	0.25	0.13	0.14	0.21	0.16
TOTAL NON-FREONS (pounds):	0.12	0.16	0.14	0.12	0.14	0.11	0.10	0.10	0.09	0.08	0.08	0.09	0.07	0.04	0.06	0.06	0.07	0.04	0.05	0.03	0.05	0.03	0.03	0.03	0.03
TOTAL FREONS (pounds):	0.49	0.70	0.62	0.57	0.51	0.37	0.41	0.58	0.35	0.32	0.35	0.24	0.25	0.17	0.22	0.23	0.26	0.14	0.20	0.16	0.20	0.11	0.11	0.17	0.13
1,1-DCA (pounds):	0.03	0.04	0.04	0.03	0.04	0.03	0.02	0.03	0.03	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01
cis-1,2 DCE (pounds):	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCE (pounds):	0.07	0.09	0.08	0.07	0.08	0.06	0.06	0.06	0.05	0.04	0.04	0.05	0.04	0.02	0.03	0.03	0.03	0.02	0.03	0.02	0.03	0.02	0.02	0.02	0.02
TCE (pounds):	0.02	0.03	0.03	0.02	0.03	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Cumulative Mass Removed			Γ	T	T			T			Γ		Τ		Т	Т			r	T	Т	Γ	T	Т	T
TOTAL VOCS (pounds):	30.80	31.67	32.43	33.13	33.77	34.25	34.76	35.44	35.88	36.28	36.72	37.04	37.35	37.57	37.85	38.14	38.47	38.65	38.89	39.08	39.33	39.47	39.61	39.81	39.97
TOTAL NON-FREONS (pounds):	6.40	6.56	6.70	6.83	6.97	7.07	7.17	7.27	7.37	7.44	7.52	7.61	7.68	7.72	7.78	7.84	7.91	7.95	7.99	8.03	8.07	8.10	8.12	8.16	8.19
TOTAL FREONS (pounds):	24.41	25.11	25.73	26.30	26.81	27.18	27.59	28.17	28.52	28.84	29.19	29.43	29.68	29.84	30.06	30.30	30.56	30.70	30.90	31.06	31.26	31.37	31.48	31.66	31.79
1,1-DCA (pounds):	1.32	1.36	1.40	1.43	1.47	1.49	1.52	1.55	1.57	1.59	1.62	1.64	1.66	1.67	1.69	1.70	1.72	1.74	1.75	1.76	1.78	1.78	1.79	1.80	1.82
cis-1.2 DCE (pounds):	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PCE (pounds):	3.60	3.69	3.77	3.84	3.91	3.97	4.03	4.09	4.14	4.18	4.22	4.27	4.31	4.33	4.37	4.40	4.43	4.45	4.48	4.50	4.53	4.55	4.57	4.59	4.61
TCE (pounds):	1.48	1.51	1.54	1.56	1.59	1.61	1.62	1.64	1.66	1.67	1.68	1.70	1.71	1.72	1.73	1.74	1.75	1.76	1.77	1.77	1.77	1.77	1.77	1.77	1.77
, oz (podrido).				1		1	1		1		1.00				•	1							1		السحيث المسا

WR-444A went on-line in March 2002

Data prior to 2009 has been previously submitted and is not included here

Bold numbers exceed the aquifer water quality standard ug/L = micrograms per liter <0.5 = Not detected

s temcommonitrarisoniwell and system infolCumulative Mass Removed 2015

Table 7
Mass Removed
Extraction Well WR-371A
Harrison Road Landfill

	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A
Period	09/01/09	11/30/09	03/01/10	06/01/10	08/31/10	12/01/10	03/02/11	05/31/11	09/01/11	12/01/11	03/01/12	05/31/12	09/01/12	12/31/12	03/01/13	06/01/13	09/01/13	01/01/14	3/1/14	06/01/14	09/01/14	1/1/15	4/1/15	7/1/15	10/1/15
	to 11/30/09	to 3/1/10	to 6/1/10	to 8/31/10	to 12/1/10	to 3/2/2011	to 5/31/2011	to 9/01/11	to 12/01/11	to 3/1/12	to 5/31/12	to 9/1/12	to 12/31/12	to 3/1/13	to 6/1/13	to 9/1/13	to 12/31/13	to 2/28/14	to 5/31/14	to 9/1/14	to 12/31/14	to 3/31/15	to 6/30/15	to 9/30/15	to 12/31/15
Sample Date	11/03/09	02/22/10	05/17/10	08/24/10	11/08/10	02/22/11	05/16/11	08/22/11	11/14/11	02/15/12	05/14/12	08/21/12	11/13/12	2/19/13	5/20/13	8/19/13	11/12/13	2/10/14	5/19/14	8/18/14	11/17/14	2/19/15	5/18/15	8/18/15	11/16/15
Analytical Result (ug/L)																									11110110
1,1-Dichloroethane (1-1,DCA)	0.6	0.6	0.7	<0.5	0.8	0.9	0.8	0.7	0.8	0.7	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.8	0.7	0.6	0.6	0.6	0.5	<0.5	<0.5
1,1-Dichloroethene (1-1,DCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethene (c-DCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (Freon 12)	6.4	6.4	6.3	2.3	11.2	11	10.9	16.2	11.4	10.5	14.4	10.5	10.6	10.5	10.4	11.2	11.8	11.2	12.6	10.1	10.3	7.8	7	8.8	6.6
Methylene chloride	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene (PCE)	1.2	1.4	1.4	<0.5	1.8	1.5	1.5	1.5	1.4	1.2	1.5	1.3	1.2	1	1	1	0.9	0.9	0.7	0.8	0.8	0.5	0.6	0.5	0.6
Trichloroethylene (TCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane (Freon 11)	<0.5	<0.5	<0.5	<0.5	0.5	0.5	<0.5	0.8	<0.5	0.6	0.8	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
																						0.0	0.0	-0.0	-0.0
Total VOCs (ug/L)	8.2	8.4	8.4	2.3	14.3	13.9	13.2	19.2	13.6	13	17.5	12.6	12.5	12.2	12.1	12.9	14	13.4	14	11.5	11.7	8.9	8.1	9.3	7.2
Total Non-Freons (ug/L)	1.8	2	2.1	0	2.6	2.4	2.3	2.2	2.2	1.9	2.3	2.1	1.9	1.7	1.7	1.7	1.6	1.7	1.4	1.4	1.4	1.1	1.1	0.5	0.6
Total Freons (ug/L)	6.4	6.4	6.3	2.3	11.7	11.5	10.9	17	11.4	11.1	15.2	10.5	10.6	10.5	10.4	11.2	12.4	11.7	12.6	10.1	10.3	7.8	7	8.8	6.6
																-	I		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1.10	<u> </u>	0.0	0.0
Flow Conditions																	T		T				1	T	T
Volume Extracted (gallons):	1,747,400	2.756.600	2.600.800	2.491.300	0 0 10 000	4 757 000	0.004.000	0.000.500		0 4 47 500						The second secon								discount of the second	
		2,100,000	2,000,000	2,491,300	2,348,600	1,757,980	2,201,900	2,090,500	2,001,000	2,147,500	1,953,400	1,934,900	1,648,200	1,226,600	1,739,500	1.630.500	1.864.800	875.500	1.268.400	1.297.500	1.608.200	960 000	837 800	1 107 100	1 025 800
		2,700,000	2,000,000	2,491,300	2,348,600	1,757,980	2,201,900	2,090,500	2,001,000	2,147,500	1,953,400	1,934,900	1,648,200	1,226,600	1,739,500	1,630,500	1,864,800		112221	1,297,500	1,608,200	960,000	837,800	1,107,100	1,025,800
Mass Removed During Period			2,000,800	2,491,300	2,348,600	1,757,980	2,201,900	2,090,500	2,001,000	2,147,500	1,953,400	1,934,900	1,648,200	1,226,600	1,739,500	1,630,500	1,864,800	875,500 1320900	1,268,400 1245100	1,297,500 1301200	1,608,200 1182400	960,000	837,800	1,107,100	1,025,800
TOTAL VOCS (pounds):	0.12	0.19	0.18	0.05	0.28	0.20	0.24	0.33	0.23	0.23	1,953,400	0.20	0.17	1,226,600	1	I		1320900	1245100	1301200	1182400				
	0.12 0.03								1				0.17	0.12	0.18	0.18	0.22	1320900	1245100	1301200	1182400 0.16	0.07	0.06	0.09	0.06
TOTAL VOCS (pounds):		0.19	0.18 0.05 0.14	0.05	0.28	0.20	0.24	0.33	0.23	0.23	0.28	0.20 0.03	0.17 0.03	0.12 0.02	0.18	0.18 0.02	0.22	1320900 0.10 0.01	1245100 0.15 0.01	1301200 0.12 0.02	1182400 0.16 0.02	0.07 0.01	0.06	0.09	0.06
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds):	0.03	0.19 0.05 0.15 0.01	0.18 0.05 0.14 0.02	0.05 0.00	0.28 0.05	0.20 0.04	0.24 0.04	0.33	0.23	0.23 0.03	0.28 0.04	0.20	0.17	0.12	0.18 0.02 0.15	0.18 0.02 0.15	0.22 0.02 0.19	1320900 0.10 0.01 0.09	1245100 0.15 0.01 0.13	1301200 0.12 0.02 0.11	1182400 0.16 0.02 0.14	0.07 0.01 0.06	0.06 0.01 0.05	0.09 0.00 0.08	0.01 0.06
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): cis-1,2 DCE (pounds):	0.03 0.09	0.19 0.05 0.15 0.01 0.00	0.18 0.05 0.14 0.02 0.00	0.05 0.00 0.05	0.28 0.05 0.23	0.20 0.04 0.17	0.24 0.04 0.20	0.33 0.04 0.30	0.23 0.04 0.19	0.23 0.03 0.20	0.28 0.04 0.25	0.20 0.03 0.17	0.17 0.03 0.15	0.12 0.02 0.11	0.18 0.02 0.15 0.01	0.18 0.02 0.15 0.01	0.22 0.02 0.19 0.01	0.10 0.01 0.09 0.01	1245100 0.15 0.01 0.13 0.01	0.12 0.02 0.11 0.01	0.16 0.02 0.14 0.01	0.07 0.01 0.06 0.00	0.06 0.01 0.05 0.00	0.09 0.00 0.08 0.00	0.06 0.01 0.06 0.00
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds):	0.03 0.09 0.01	0.19 0.05 0.15 0.01	0.18 0.05 0.14 0.02	0.05 0.00 0.05 0.00	0.28 0.05 0.23 0.02	0.20 0.04 0.17 0.01	0.24 0.04 0.20 0.01	0.33 0.04 0.30 0.01	0.23 0.04 0.19 0.01	0.23 0.03 0.20 0.01	0.28 0.04 0.25 0.01 0.00	0.20 0.03 0.17 0.01	0.17 0.03 0.15 0.01 0.00	0.12 0.02 0.11 0.01 0.00	0.18 0.02 0.15 0.01 0.00	0.18 0.02 0.15 0.01 0.00	0.22 0.02 0.19 0.01 0.00	0.10 0.01 0.01 0.09 0.01 0.00	1245100 0.15 0.01 0.13 0.01 0.00	0.12 0.02 0.11 0.01 0.00	1182400 0.16 0.02 0.14 0.01 0.00	0.07 0.01 0.06 0.00 0.00	0.06 0.01 0.05 0.00 0.00	0.09 0.00 0.08 0.00 0.00	0.06 0.01 0.06 0.00 0.00
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): cis-1,2 DCE (pounds):	0.03 0.09 0.01 0.00	0.19 0.05 0.15 0.01 0.00	0.18 0.05 0.14 0.02 0.00	0.05 0.00 0.05 0.00 0.00	0.28 0.05 0.23 0.02 0.00	0.20 0.04 0.17 0.01 0.00	0.24 0.04 0.20 0.01 0.00	0.33 0.04 0.30 0.01 0.00	0.23 0.04 0.19 0.01 0.00	0.23 0.03 0.20 0.01 0.00	0.28 0.04 0.25 0.01	0.20 0.03 0.17 0.01 0.00	0.17 0.03 0.15 0.01 0.00 0.02	0.12 0.02 0.11 0.01 0.00 0.01	0.18 0.02 0.15 0.01 0.00 0.01	0.18 0.02 0.15 0.01 0.00 0.01	0.22 0.02 0.19 0.01 0.00 0.01	0.10 0.01 0.09 0.01 0.00 0.01	0.15 0.01 0.13 0.01 0.00 0.00 0.00	0.12 0.02 0.11 0.01 0.00 0.00 0.01	0.16 0.02 0.14 0.01 0.00 0.00	0.07 0.01 0.06 0.00 0.00 0.00	0.06 0.01 0.05 0.00 0.00 0.00	0.09 0.00 0.08 0.00 0.00 0.00	0.06 0.01 0.06 0.00 0.00 0.00
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): cis-1,2 DCE (pounds): PCE (pounds):	0.03 0.09 0.01 0.00 0.02	0.19 0.05 0.15 0.01 0.00 0.03	0.18 0.05 0.14 0.02 0.00 0.03	0.05 0.00 0.05 0.00 0.00 0.00	0.28 0.05 0.23 0.02 0.00 0.04	0.20 0.04 0.17 0.01 0.00 0.02	0.24 0.04 0.20 0.01 0.00 0.03	0.33 0.04 0.30 0.01 0.00 0.03	0.23 0.04 0.19 0.01 0.00 0.02	0.23 0.03 0.20 0.01 0.00 0.02	0.28 0.04 0.25 0.01 0.00 0.02	0.20 0.03 0.17 0.01 0.00 0.02	0.17 0.03 0.15 0.01 0.00	0.12 0.02 0.11 0.01 0.00	0.18 0.02 0.15 0.01 0.00	0.18 0.02 0.15 0.01 0.00	0.22 0.02 0.19 0.01 0.00	0.10 0.01 0.01 0.09 0.01 0.00	1245100 0.15 0.01 0.13 0.01 0.00	0.12 0.02 0.11 0.01 0.00	1182400 0.16 0.02 0.14 0.01 0.00	0.07 0.01 0.06 0.00 0.00	0.06 0.01 0.05 0.00 0.00	0.09 0.00 0.08 0.00 0.00	0.06 0.01 0.06 0.00 0.00
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): cis-1,2 DCE (pounds): PCE (pounds): TCE (pounds):	0.03 0.09 0.01 0.00 0.02	0.19 0.05 0.15 0.01 0.00 0.03	0.18 0.05 0.14 0.02 0.00 0.03	0.05 0.00 0.05 0.00 0.00 0.00	0.28 0.05 0.23 0.02 0.00 0.04	0.20 0.04 0.17 0.01 0.00 0.02	0.24 0.04 0.20 0.01 0.00 0.03	0.33 0.04 0.30 0.01 0.00 0.03	0.23 0.04 0.19 0.01 0.00 0.02	0.23 0.03 0.20 0.01 0.00 0.02	0.28 0.04 0.25 0.01 0.00 0.02	0.20 0.03 0.17 0.01 0.00 0.02	0.17 0.03 0.15 0.01 0.00 0.02	0.12 0.02 0.11 0.01 0.00 0.01	0.18 0.02 0.15 0.01 0.00 0.01	0.18 0.02 0.15 0.01 0.00 0.01	0.22 0.02 0.19 0.01 0.00 0.01	0.10 0.01 0.09 0.01 0.00 0.01	0.15 0.01 0.13 0.01 0.00 0.00 0.00	0.12 0.02 0.11 0.01 0.00 0.00 0.01	0.16 0.02 0.14 0.01 0.00 0.00	0.07 0.01 0.06 0.00 0.00 0.00	0.06 0.01 0.05 0.00 0.00 0.00	0.09 0.00 0.08 0.00 0.00 0.00	0.06 0.01 0.06 0.00 0.00 0.00
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): cis-1,2 DCE (pounds): PCE (pounds):	0.03 0.09 0.01 0.00 0.02	0.19 0.05 0.15 0.01 0.00 0.03	0.18 0.05 0.14 0.02 0.00 0.03	0.05 0.00 0.05 0.00 0.00 0.00	0.28 0.05 0.23 0.02 0.00 0.04	0.20 0.04 0.17 0.01 0.00 0.02	0.24 0.04 0.20 0.01 0.00 0.03	0.33 0.04 0.30 0.01 0.00 0.03 0.00	0.23 0.04 0.19 0.01 0.00 0.02 0.00	0.23 0.03 0.20 0.01 0.00 0.02 0.00	0.28 0.04 0.25 0.01 0.00 0.02 0.00	0.20 0.03 0.17 0.01 0.00 0.02 0.00	0.17 0.03 0.15 0.01 0.00 0.02 0.00	0.12 0.02 0.11 0.01 0.00 0.01 0.00	0.18 0.02 0.15 0.01 0.00 0.01 0.00	0.18 0.02 0.15 0.01 0.00 0.01 0.00	0.22 0.02 0.19 0.01 0.00 0.01 0.00	0.10 0.01 0.01 0.09 0.01 0.00 0.01 0.00	1245100 0.15 0.01 0.13 0.01 0.00 0.01 0.00	1301200 0.12 0.02 0.11 0.01 0.00 0.01 0.00	0.16 0.02 0.14 0.01 0.00 0.01 0.00	0.07 0.01 0.06 0.00 0.00 0.00 0.00	0.06 0.01 0.05 0.00 0.00 0.00	0.09 0.00 0.08 0.00 0.00 0.00 0.00	0.06 0.01 0.06 0.00 0.00 0.00 0.01
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): cis-1,2 DCE (pounds): PCE (pounds): TCE (pounds):	0.03 0.09 0.01 0.00 0.02 0.00	0.19 0.05 0.15 0.01 0.00 0.03 0.00	0.18 0.05 0.14 0.02 0.00 0.03 0.00	0.05 0.00 0.05 0.00 0.00 0.00 0.00	0.28 0.05 0.23 0.02 0.00 0.04 0.00	0.20 0.04 0.17 0.01 0.00 0.02 0.00	0.24 0.04 0.20 0.01 0.00 0.03 0.00	0.33 0.04 0.30 0.01 0.00 0.03 0.00	0.23 0.04 0.19 0.01 0.00 0.02 0.00	0.23 0.03 0.20 0.01 0.00 0.02 0.00	0.28 0.04 0.25 0.01 0.00 0.02 0.00	0.20 0.03 0.17 0.01 0.00 0.02 0.00	0.17 0.03 0.15 0.01 0.00 0.02 0.00	0.12 0.02 0.11 0.01 0.00 0.01 0.00	0.18 0.02 0.15 0.01 0.00 0.01 0.00	0.18 0.02 0.15 0.01 0.00 0.01 0.00	0.22 0.02 0.19 0.01 0.00 0.01 0.00	1320900 0.10 0.01 0.09 0.01 0.00 0.01 0.00 42.31	1245100 0.15 0.01 0.13 0.01 0.00 0.01 0.00 42.45	1301200 0.12 0.02 0.11 0.01 0.00 0.01 0.00 42.58	1182400 0.16 0.02 0.14 0.01 0.00 0.01 0.00 42.74	0.07 0.01 0.06 0.00 0.00 0.00 0.00 42.81	0.06 0.01 0.05 0.00 0.00 0.00 0.00 42.86	0.09 0.00 0.08 0.00 0.00 0.00 0.00	0.06 0.01 0.06 0.00 0.00 0.01 0.00
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): cis-1,2 DCE (pounds): PCE (pounds): TCE (pounds): Cumulative Mass Removed TOTAL VOCS (pounds):	0.03 0.09 0.01 0.00 0.02 0.00	0.19 0.05 0.15 0.01 0.00 0.03 0.00	0.18 0.05 0.14 0.02 0.00 0.03 0.00	0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.00	0.28 0.05 0.23 0.02 0.00 0.04 0.00	0.20 0.04 0.17 0.01 0.00 0.02 0.00	0.24 0.04 0.20 0.01 0.00 0.03 0.00	0.33 0.04 0.30 0.01 0.00 0.03 0.00	0.23 0.04 0.19 0.01 0.00 0.02 0.00 40.62 10.87	0.23 0.03 0.20 0.01 0.00 0.02 0.00 40.86 10.90	0.28 0.04 0.25 0.01 0.00 0.02 0.00	0.20 0.03 0.17 0.01 0.00 0.02 0.00	0.17 0.03 0.15 0.01 0.00 0.02 0.00 41.52 11.00	0.12 0.02 0.11 0.01 0.00 0.01 0.00 41.64 11.02	0.18 0.02 0.15 0.01 0.00 0.01 0.00 41.82 11.04	0.18 0.02 0.15 0.01 0.00 0.01 0.00 41.99 11.06	0.22 0.02 0.19 0.01 0.00 0.01 0.00 42.21	1320900 0.10 0.01 0.09 0.01 0.00 0.01 0.00 42.31 11.10	1245100 0.15 0.01 0.13 0.01 0.00 0.01 0.00 42.45 11.12	1301200 0.12 0.02 0.11 0.01 0.00 0.01 0.00 42.58 11.13	0.16 0.02 0.14 0.01 0.00 0.01 0.00 42.74 11.15	0.07 0.01 0.06 0.00 0.00 0.00 0.00 0.00	0.06 0.01 0.05 0.00 0.00 0.00 0.00 0.00 42.86 11.17	0.09 0.00 0.08 0.00 0.00 0.00 0.00 0.00	0.06 0.01 0.06 0.00 0.00 0.01 0.00
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): cis-1,2 DCE (pounds): PCE (pounds): TCE (pounds): TCE (pounds): Cumulative Mass Removed TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds):	0.03 0.09 0.01 0.00 0.02 0.00 38.92 10.57	0.19 0.05 0.15 0.01 0.00 0.03 0.00 39.11 10.62	0.18 0.05 0.14 0.02 0.00 0.03 0.00 39.29	0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.00	0.28 0.05 0.23 0.02 0.00 0.04 0.00	0.20 0.04 0.17 0.01 0.00 0.02 0.00 39.82	0.24 0.04 0.20 0.01 0.00 0.03 0.00 40.06 10.79 29.27	0.33 0.04 0.30 0.01 0.00 0.03 0.00	0.23 0.04 0.19 0.01 0.00 0.02 0.00 40.62 10.87 29.76	0.23 0.03 0.20 0.01 0.00 0.02 0.00 40.86 10.90 29.96	0.28 0.04 0.25 0.01 0.00 0.02 0.00 41.14 10.94 30.20	0.20 0.03 0.17 0.01 0.00 0.02 0.00 41.34 10.97 30.37	0.17 0.03 0.15 0.01 0.00 0.02 0.00 41.52 11.00 30.52	0.12 0.02 0.11 0.01 0.00 0.01 0.00 41.64 11.02 30.62	0.18 0.02 0.15 0.01 0.00 0.01 0.00 41.82 11.04 30.77	0.18 0.02 0.15 0.01 0.00 0.01 0.00 41.99 11.06 30.93	0.22 0.02 0.19 0.01 0.00 0.01 0.00 42.21 11.09 31.12	1320900 0.10 0.01 0.09 0.01 0.00 0.01 0.00 42.31 11.10 31.20	1245100 0.15 0.01 0.13 0.01 0.00 0.01 0.00 42.45 11.12 31.34	1301200 0.12 0.02 0.11 0.01 0.00 0.01 0.00 42.58 11.13 31.45	1182400 0.16 0.02 0.14 0.01 0.00 0.01 0.00 42.74 11.15 31.59	0.07 0.01 0.06 0.00 0.00 0.00 0.00 0.00 42.81 11.16 31.65	0.06 0.01 0.05 0.00 0.00 0.00 0.00 42.86 11.17 31.70	0.09 0.00 0.08 0.00 0.00 0.00 0.00 42.95 11.17 31.78	0.06 0.01 0.06 0.00 0.00 0.01 0.00 43.01 11.18 31.83
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): Cis-1,2 DCE (pounds): PCE (pounds): TCE (pounds): TCE (pounds): Cumulative Mass Removed TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds):	0.03 0.09 0.01 0.00 0.02 0.00 38.92 10.57 28.34	0.19 0.05 0.15 0.01 0.00 0.03 0.00 39.11 10.62 28.49	0.18 0.05 0.14 0.02 0.00 0.03 0.00 39.29 10.66 28.63	0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.00	0.28 0.05 0.23 0.02 0.00 0.04 0.00 39.62 10.72 28.90 1.83	0.20 0.04 0.17 0.01 0.00 0.02 0.00 39.82 10.75 29.07 1.84	0.24 0.04 0.20 0.01 0.00 0.03 0.00 40.06 10.79 29.27 1.85	0.33 0.04 0.30 0.01 0.00 0.03 0.00 40.40 10.83 29.57 1.87	0.23 0.04 0.19 0.01 0.00 0.02 0.00 40.62 10.87 29.76 1.88	0.23 0.03 0.20 0.01 0.00 0.02 0.00 40.86 10.90 29.96 1.89	0.28 0.04 0.25 0.01 0.00 0.02 0.00 41.14 10.94 30.20 1.91	0.20 0.03 0.17 0.01 0.00 0.02 0.00 41.34 10.97 30.37 1.92	0.17 0.03 0.15 0.01 0.00 0.02 0.00 41.52 11.00 30.52 1.93	0.12 0.02 0.11 0.01 0.00 0.01 0.00 41.64 11.02 30.62 1.94	0.18 0.02 0.15 0.01 0.00 0.01 0.00 41.82 11.04 30.77 1.95	0.18 0.02 0.15 0.01 0.00 0.01 0.00 41.99 11.06 30.93 1.95	0.22 0.02 0.19 0.01 0.00 0.01 0.00 42.21 11.09 31.12 1.97	1320900 0.10 0.01 0.09 0.01 0.00 0.01 0.00 42.31 11.10 31.20 1.97	1245100 0.15 0.01 0.13 0.01 0.00 0.01 0.00 42.45 11.12 31.34 1.98	1301200 0.12 0.02 0.11 0.01 0.00 0.01 0.00 42.58 11.13 31.45 1.99	1182400 0.16 0.02 0.14 0.01 0.00 0.01 0.00 42.74 11.15 31.59 1.99	0.07 0.01 0.06 0.00 0.00 0.00 0.00 0.00 42.81 11.16 31.65 2.00	0.06 0.01 0.05 0.00 0.00 0.00 0.00 42.86 11.17 31.70 2.00	0.09 0.00 0.08 0.00 0.00 0.00 0.00 42.95 11.17 31.78 2.00	0.06 0.01 0.06 0.00 0.00 0.01 0.00 43.01 11.18 31.83 2.00
TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds): Cis-1,2 DCE (pounds): PCE (pounds): TCE (pounds): TCE (pounds): Cumulative Mass Removed TOTAL VOCS (pounds): TOTAL NON-FREONS (pounds): TOTAL FREONS (pounds): 1,1-DCA (pounds):	0.03 0.09 0.01 0.00 0.02 0.00 38.92 10.57 28.34 1.78	0.19 0.05 0.15 0.01 0.00 0.03 0.00 39.11 10.62 28.49 1.80	0.18 0.05 0.14 0.02 0.00 0.03 0.00 39.29 10.66 28.63 1.81	0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.00	0.28 0.05 0.23 0.02 0.00 0.04 0.00 39.62 10.72 28.90	0.20 0.04 0.17 0.01 0.00 0.02 0.00 39.82 10.75 29.07	0.24 0.04 0.20 0.01 0.00 0.03 0.00 40.06 10.79 29.27	0.33 0.04 0.30 0.01 0.00 0.03 0.00 40.40 10.83 29.57	0.23 0.04 0.19 0.01 0.00 0.02 0.00 40.62 10.87 29.76	0.23 0.03 0.20 0.01 0.00 0.02 0.00 40.86 10.90 29.96	0.28 0.04 0.25 0.01 0.00 0.02 0.00 41.14 10.94 30.20	0.20 0.03 0.17 0.01 0.00 0.02 0.00 41.34 10.97 30.37	0.17 0.03 0.15 0.01 0.00 0.02 0.00 41.52 11.00 30.52	0.12 0.02 0.11 0.01 0.00 0.01 0.00 41.64 11.02 30.62	0.18 0.02 0.15 0.01 0.00 0.01 0.00 41.82 11.04 30.77	0.18 0.02 0.15 0.01 0.00 0.01 0.00 41.99 11.06 30.93	0.22 0.02 0.19 0.01 0.00 0.01 0.00 42.21 11.09 31.12	1320900 0.10 0.01 0.09 0.01 0.00 0.01 0.00 42.31 11.10 31.20	1245100 0.15 0.01 0.13 0.01 0.00 0.01 0.00 42.45 11.12 31.34	1301200 0.12 0.02 0.11 0.01 0.00 0.01 0.00 42.58 11.13 31.45	1182400 0.16 0.02 0.14 0.01 0.00 0.01 0.00 42.74 11.15 31.59	0.07 0.01 0.06 0.00 0.00 0.00 0.00 0.00 42.81 11.16 31.65	0.06 0.01 0.05 0.00 0.00 0.00 0.00 42.86 11.17 31.70	0.09 0.00 0.08 0.00 0.00 0.00 0.00 42.95 11.17 31.78	0.06 0.01 0.06 0.00 0.00 0.01 0.00 43.01 11.18 31.83

WR-371A went on-line in June 2001
Data prior to 2009 has been
previously submitted and is not
included here
Bold numbers exceed the aquifer
water quality standard
ug/L = micrograms per liter
<0.5 = Not detected

s lemcommonlharrison/well and system infol/Cumulative Mass Removed 2015

Table 7 Mass Removed Extraction Well WR-285A Harrison Road Landfill

	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A
Period	09/01/09	11/30/09	03/01/10	06/01/10	08/31/10	12/01/10	03/02/11	05/31/11	09/01/11	12/01/11	03/01/12	05/31/12	09/01/12	12/31/12	3/1/13	6/1/13	9/1/13	12/31/14	3/1/14	6/1/14	9/1/14	1/1/15	4/1/15	7/1/15
	to 11/30/09	3/1/2010	to 6/1/10	to 8/31/10	to 12/1/10	to 3/2/2011	to 5/31/2011	to 9/1/2011	to 12/1/2011	to 3/1/2012	to 5/31/12	to 9/1/12	to 12/31/12	to 3/1/13	to 6/1/13	to 9/1/13	to 12/31/2013		to 5/31/14	to 9/1/14	to 12/31/2014		to 6/30/15	to 9/30/15
Sample Date	11/3/09	2/22/10	5/17/10	8/24/10	11/8/10	2/22/11	5/16/11	8/22/11	11/14/11	2/15/12	5/14/12	8/21/12	11/13/12	2/19/13	5/20/13	8/19/13	11/12/13	2/10/14	5/19/14	8/18/14	11/17/14	2/19/15	5/18/15	8/18/15
Analytical Result (ug/L)							•									0,10,10	11712110	2/10/11	0.10/11	0/10/11	1 1717714	2/10/10	0/10/10	0/10/13
1,1-Dichloroethane (1-1,DCA)	0.9	0.8	0.9	0.8	0.9	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.7	0.6	0.6	0.8	0.6	0.7	0.7	0.6	0.7	<0.5
1,1-Dichloroethene (1-1,DCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethene (c-DCE)	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Dichlorodifluoromethane (Freon 12)	15	15.6	14.8	18.4	15.8	11.7	12.2	16.8	11.2	11.7	11	11.3	10.7	11.5	10.5	15.3	15.1	15.1	13.5	10	10.7	8.8	8.8	9
Methylene chloride	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene (PCE)	3.4	2.7	2.7	2.4	2.2	1.4	1.3	1.1	0.8	0.8	0.8	0.8	0.7	0.6	<0.5	0.8	0.8	0.6	0.5	0.5	0.6	0.7	0.6	1
Trichloroethylene (TCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane (Freon 11)	1.0	1.0	1.0	0.9	0.8	0.6	0.6	0.8	<0.5	0.6	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total VOCs (ug/L)	20.3	20.1	19.4	22.5	19.7	14.6	14.9	19.5	12.8	13.9	13.2	12.9	12.1	12.8	11.2	16.7	16.5	16.5	14.6	11.2	12	10.1	10.1	- 40
Total Non-Freons (ug/L)	4.3	3.5	3.6	3.2	3.1	2.3	2.1	1.9	1.6	1.6	1.6	1.6	1.4	1.3	0.7	1.4	1.4	1.4	14.6	1.2	1.3	1.3	10.1	10
Total Freons (ug/L)	16	16.6	15.8	19.3	16.6	12.3	12.8	17.6	11.2	12.3	11.6	11.3	10.7	11.5	10.5	15.3	15.1	1.4	13.5	1.2	1.3	8.8	1.3 8.8	1
[5] O 111																1,010	1	1 1911	10.0	10	10.7	0.0	0.0	
Flow Conditions	044.000	4 000 000	4.400.000	077.000	005.000	0.10.000																		
Volume Extracted (gallons):	811,200	1,226,800	1,126,900	977,200	885,800	342,600	518,000	452,400	382,400	420,300	409,500	374,800	304,700	160,400	100	0	100	50	50	0	200	0	0	31,700
Mass Removed During Period					Γ	T	T	1		T		T	T	l			Ι	Γ		T	T			
TOTAL VOCS (pounds):	0.14	0.21	0.18	0.18	0.15	0.04	0.06	0.07	0.04	0.05	0.05	0.04	0.03	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL NON-FREONS (pounds):	0.03	0.04	0.03	0.03	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL FREONS (pounds):	0.11	0.17	0.15	0.16	0.12	0.04	0.06	0.07	0.04	0.04	0.04	0.04	0.03	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1,1-DCA (pounds):	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cis-1,2 DCE (pounds):	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PCE (pounds):	0.02	0.03	0.03	0.02	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TCE (pounds):	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cumulative Mass Removed				T	Ι	Γ		T	I	T		T									1			
TOTAL VOCS (pounds):	6.41	6.62	6.80	6.98	7.13	7.17	7.24	7.31	7.35	7.40	7.44	7.48	7.51	7.53	7.53	7.53	7.53	7.53	7.53	7.53	7.53	7.53	7.53	7.50
TOTAL NON-FREONS (pounds):	1.59	1.62	1.66	1.68	1.71	1.71	1.72	1.73	1.73	1.74	1.75	1.75	1.75	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76		7.53
TOTAL FREONS (pounds):	4.83	5.00	5.14	5.30	5.42	5.46	5.51	5.58	5.62	5.66	5.70	5.73	5.76	5.78	5.78	5.78	5.78	5.78	5.78	5.78	5.78	5.78	1.76 5.78	1.76
1,1-DCA (pounds):	0.31	0.32	0.33	0.33	0.34	0.34	0.35	0.35	0.35	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	5.78 0.36
cis-1,2 DCE (pounds):	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.36	0.36	0.36	0.01	0.36	0.36	0.36	0.36	0.36	0.36	0.36
PCE (pounds):	1.03	1.06	1.09	1.11	1.12	1.13	1.13	1.14	1.14	1.14	1.14	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
TCE (pounds):	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					1.20	J 5.20	0.20	0.20	0.20	0.20	0.20	0.20	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23

WR-285A went on-line in January 2005

Data prior to 2009 has been previously submitted and is not included here

Bold numbers exceed the aquifer water quality standard ug/L = micrograms per liter <0.5 = Not detected
The well was shut down for rebound testing in February 2013.

is lemcommon/harrison/well and system infolCumulative Mass Removed 2015

Table 8 Cumulative Mass Removed Harrison Road Landfill

Extraction Well ID	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A
					WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A
Sample Date	7/13/01	8/23/01	11/15/01	2/11/02	6/13/02	8/13/02	10/17/02	11/25/02	2/17/03	5/19/03	8/19/03	11/24/03	2/17/04
umulative Mass Removed													
TOTAL VOCS (pounds):	3.17	5.53	8.53	12.36	15.43	18.13	20.03	21.44	24.09	26.87	28.74	31.89	34.18
TOTAL NON-FREONS (pounds):	0.86	1.40	2.40	3.23	3.84	4.45	4.92	5.26	5.93	6.77	7.22	8.10	8.82
TOTAL FREONS (pounds):	2.31	4.13	6.13	9.12	11.59	13.69	15.10	16.18	18.16	20.10	21.51	23.78	25.37
1,1-Dichloroethane (1-1,DCA) (pounds):	0.14	0.23	0.40	0.51	0.62	0.71	0.78	0.82	0.88	1.01	1.08	1.23	1.35
cis-1,2-Dichloroethene (c-DCE) (pounds):	0.03	0.05	0.11	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.16	0.16
Tetrachloroethylene (PCE) (pounds):	0.49	0.81	1.37	1.88	2.23	2.62	2.92	3.13	3.57	4.07	4.33	4.86	5.29
Trichloroethylene (TCE) (pounds):	0.20	0.31	0.53	0.70	0.83	0.97	1.08	1.16	1.34	1.53	1.64	1.84	2.00

	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A
Extraction Well ID	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A
				WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A
Sample Date	5/13/04	8/24/04	11/17/04	2/22/05	5/11/05	8/22/05	11/16/05	2/21/06	5/24/06	8/21/06	11/9/06	2/21/07	5/17/07
umulative Mass Removed				10 //Cult 9 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -								<u> </u>	
TOTAL VOCS (pounds):	36.87	39.18	41.09	42.55	44.72	46.81	49.61	52.1	53.6	55.5	57.9	59.4	61.0
TOTAL NON-FREONS (pounds):	9.53	10.24	10.68	11.14	11.79	12.32	12.83	13.4	13.8	14.3	14.8	15.1	15.4
TOTAL FREONS (pounds):	27.34	28.95	30.42	31.42	32.93	34.49	36.77	38.7	39.8	41.3	43.1	44.3	45.6
1,1-DCA (pounds):	1.48	1.61	1.71	1.79	1.90	2.00	2.11	2.2	2.3	2.4	2.6	2.6	2.7
cis-1,2 DCE (pounds):	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.2	0.2	0.2	0.2	0.2	0.2
PCE (pounds):	5.71	6.14	6.39	6.66	7.07	7.40	7.70	8.0	8.3	8.5	8.8	9.0	9.1
TCE (pounds):	2.16	2.31	2.40	2.50	2.63	2.74	2.85	3.0	3.1	3.1	3.2	3.3	3.4

	WR-371A													
Extraction Well ID	WR-444A													
6	WR-285A													
Sample Date	8/9/07	11/7/07	2/25/08	5/20/08	8/18/08	11/4/08	2/24/09	5/18/09	8/11/09	11/3/09	2/22/10	5/17/10	8/24/10	11/8/10
Cumulative Mass Removed														
TOTAL VOCS (pounds):	62.5	64.8	66.9	68.9	70.6	71.8	73.2	74.3	75.3	76.1	77.4	78.5	79.5	80.5
TOTAL NON-FREONS (pounds):	15.7	16.2	16.6	16.9	17.3	17.6	17.9	18.1	18.4	18.6	18.8	19.0	19.2	19.4
TOTAL FREONS (pounds):	46.7	48.6	50.3	52.0	53.2	54.2	55.3	56.1	56.9	57.6	58.6	59.5	60.3	61.1
1,1-DCA (pounds):	2.8	2.9	3.0	3.1	3.1	3.2	3.3	3.3	3.4	3.4	3.4	3.5	3.5	3.6
cis-1,2 DCE (pounds):	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
PCE (pounds):	9.3	9.6	9.8	10.1	10.3	10.4	10.6	10.8	10.9	11.1	11.2	11.3	11.4	11.6
TCE (pounds):	3.4	3.5	3.6	3.7	3.7	3.8	3.8	3.8	3.9	3.9	3.9	4.0	4.0	4.0

	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A	WR-371A
Extraction Well ID	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A
9001 (Gal. 2005 OF	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A
Sample Date	2/22/11	5/16/11	8/22/11	11/14/11	2/15/12	5/14/12	8/21/12	11/13/12	2/19/13	5/20/13	8/19/13	11/12/13	2/10/14	5/19/14
Cumulative Mass Removed														
TOTAL VOCS (pounds):	81.2	82.1	83.2	83.9	84.5	85.3	85.9	86.4	86.7	87.2	87.7	88.2	88.5	88.9
TOTAL NON-FREONS (pounds):	19.5	19.7	19.8	20.0	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.8	20.9
TOTAL FREONS (pounds):	61.7	62.4	63.2	63.9	64.5	65.1	65.5	66.0	66.2	66.6	67.0	67.5	67.7	68.0
1,1-DCA (pounds):	3.7	3.7	3.8	3.8	3.8	3.9	3.9	3.9	4.0	4.0	4.0	4.1	4.1	4.1
cis-1,2 DCE (pounds):	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
PCE (pounds):	11.6	11.7	11.8	11.9	12.0	12.0	12.1	12.2	12.2	12.3	12.3	12.3	12.4	12.4
TCE (pounds):	4.0	4.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.2	4.2	4.2	4.2

	WR-371A	WR-371A	WR-285A	WR-285A	WR-285A	WR-285A
Extraction Well ID	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A	WR-444A
	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A	WR-285A
Sample Date	8/18/14	11/17/14	2/19/15	5/18/15	8/18/15	11/16/15
Cumulative Mass Removed						
TOTAL VOCS (pounds):	89.20	89.60	89.81	90.00	90.29	90.51
TOTAL NON-FREONS (pounds):	20.91	20.98	21.01	21.05	21.08	21.12
TOTAL FREONS (pounds):	68.28	68.62	68.79	68.96	69.21	69.40
1,1-DCA (pounds):	4.11	4.13	4.15	4.16	4.17	4.18
cis-1,2 DCE (pounds):	0.16	0.16	0.16	0.16	0.16	0.16
PCE (pounds):	12.43	12.48	12.50	12.52	12.55	12.57
TCE (pounds):	4.18	4.18	4.18	4.18	4.18	4.18

Table 9
Carbon Effluent VOC Concentrations
Harrison Road Landfill

Sample ID	CARBON #	1 CARBON #1	CARBON #1	CARBON #1	CARBON #1	CARBON #1	CARBON #1																			
Date	8/11/09	11/3/09	2/22/10	5/17/10	8/24/10	11/8/10	2/22/11	5/16/11	8/22/11	11/14/11	2/15/12	5/14/12	8/21/12	11/13/12	2/19/13	5/20/13	8/19/13	11/12/13	2/10/14	5/19/14	8/18/2014	11/17/2014	2/19/2015	5/18/2015	8/18/2015	11/16/2015
Analytical Result (ug/L)																										
1,1-Dichloroethane (1-1,DCA)	1.0	<0.5	0.6	1.3	1.1	1	<0.5	<0.5	0.7	1	0.8	1	1	0.8	0.8	0.9	0.8	0.7	0.8	0.7	0.8	0.6	0.7	0.5	0.6	0.6
1,1-Dichloroethene (1-1,DCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroform	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethene (c-DCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (Freon 12)	9.2	1.6	12.0	15.3	12.2	11.2	<0.5	9.0	16.4	11.7	8.8	12.3	12.2	9.6	10.3	9.2	9.6	8.7	10.1	8.8	8.2	7.6	6.6	4.9	7.8	6.5
Methylene chloride	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene (PCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene (TCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane (Freon 11)	0.7	<0.5	<0.5	<0.5	0.5	0.6	<0.5	<0.5	<0.5	<0.5	0.5	0.6	0.6	<0.5	<0.5	0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl chloride (VC)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Sample	ID Carbon #2	Carbon #2	Carbon #2	Carbon #2	Carbon #2	Carbon #2																				
Da	te 8/11/09	11/3/09	2/22/10	5/17/10	8/24/10	11/8/10	2/22/11	5/16/11	8/22/11	11/14/11	2/15/12	5/14/12	8/21/12	11/13/12	2/19/13	5/20/13	8/19/13	11/12/13	2/10/14	5/19/14	8/18/2014	11/17/2014	2/19/2015	5/18/2015	8/18/2015	11/16/2015
Analytical Result (ug/L)																										
1,1-Dichloroethane (1-1,DCA)	0.7	<0.5	<0.5	<0.5	0.5	0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethene (1-1,DCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroform	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethene (c-DCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (Freon 12) 10.1	<0.5	10.5	13.3	11.8	11.7	<0.5	<0.5	4.2	8.6	9.8	16.8	12.4	9.9	11.6	13.6	17.4	13.5	10.3	13.9	9.9	8	5.6	7.4	10.8	4.9
Methylene chloride	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene (PCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene (TCE)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane (Freon 11)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl chloride (VC)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

All results are reported in micrograms per liter (ug/L). Data prior to 8/2009 has been reported previously and is not shown. Carbon vessels are plumbed in series with Carbon#1 as the lead vessel.

Table 10
Groundwater Monitoring and Sampling Schedule
Harrison Landfill

				RE	BOUND TE	STING					POSTCL	OSURE	
			FIRS	T YEAR			SI	COND YE	AR	Tł	HIRD YEAR AN	ID AFTERWA	RD
			2	016				2017		20)18	20)19
Analyte Type→		0	rg		In	or	0	rg	Inor	Org	Inor	Org	Inor
Sampling Quarter→	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr	2 nd Qtr	4 th Qtr	2 nd Qtr	4 th Qtr	2 nd Qtr				
Well ID	Monitori	ing and Sa	mpling Fr	equencies	5								
412P		Х		х			X	X		X		X	
HLM-550	X	X	х	х			X	X		X		X	
¹ R-095A		X		х			Х	х		Х		X	
¹ R-097A		X		Х	Х	х	X	x	х	Х	Х	x	x
R-119A		X		Х			X	X		X		X	
² WR-119A	X	Х	Х	х	х	х	X	x	х	Х	Х	х	х
¹ WR-120A	Х	х	х	х	х	×	X	X	Х	X	х	х	х
WR-121A		x		Х	Х	Х	х	X	Х	Х	X	х	х
WR-122A		X		х	Х	Х	Х	х	х	x	х	x	х
WR-244A		X		х			X	X		X		X	
² WR-245A	Х	х	х	х			х	х		Х		x	
² WR-276A	х	x	х	х			Х	X		Х		x	
³ WR-285A	x	Х	х										
WR-286A		х	х				Х	Х		Х		Х	
WR-321A	Х	X	Х	х			Х	Х		X		Х	
⁴ WR-371A	X	X	X	х			Х	X		Х		X	
WR-443A	Х	х	Х	х			Х	X		Х		X	
⁴ WR-444A	X	х	X	Х			X	X		X		x	

Notes:

Org = Organics (VOC's)

Inor = Inorganics

¹ Inacctive Injection Well

² Active Injection Well

³ Inacctive Extraction Well

⁴ Active Extraction Well

Table 11 Groundwater Analytical Constituents, Methods, Preservatives and Holding Times Harrison Road Landfill

Parameter List	Method	Preservative	Holding Time
		Filed Parameters	
рH	Field Instrument	N/A	N/A
Conductivity	Field Instrument	N/A	N/A
Temperature	Field Instrument	N/A	N/A
Dissolved Oxygen	Field Instrument	N/A	N/A
ORP	Field Instrument	N/A	N/A
Turbidity	Field Instrument	N/A	N/A
Alkalinity	SM2320 B	4°C	14 days
		Organics (VOC)	T
1,1-Dichloroethane	E8260	4°C, HCl to pH<2	14 days
Dichlorodifluoromethane	E8260	4°C, HCl to pH<2	14 days
Methyl Ethyl Ketone	E8260	4°C, HCl to pH<2	14 days
1,2-Dichloropropane	E8260	4°C, HCl to pH<2	14 days
Chloroform	E8260	4°C, HCl to pH<2	14 days
cis-1,2-Dichloroethene	E8260	4°C, HCl to pH<2	14 days
Tetrachloroethene	E8260	4°C, HCl to pH<2	14 days
Trichloroethene	E8260	4°C, HCl to pH<2	14 days
Trichlorofluoromethane	E8260	4°C, HCl to pH<2	14 days
		Inorganics	
Ammonia	E350.1	4°C, H ₂ SO ₄ to pH<2	28 days
Major Anions	E300	4°C	28 Days except nitrate is 48 hours
Arsenic	E200.9	4°C, HNO₃ to pH<2	180 days
Calcium	E200.7	4°C, HNO ₃ to pH<2	180 days
Chromium	E200.7	4°C, HNO ₃ to pH<2	180 days
Iron	E200.7	4°C, HNO ₃ to pH<2	180 days
Lead	E200.9	4°C, HNO ₃ to pH<2	180 days
Magnesium	E200.7	4°C, HNO ₃ to pH<2	180 days
Manganese	E200.7	4°C, HNO ₃ to pH<2	180 days
Potassium	E200.7	4°C, HNO ₃ to pH<2	180 days
Sodium	E200.7	4°C, HNO ₃ to pH<2	180 days
Total Dissolved Solids	SM 2540 C	4°C	7 days

Notes:

Major Anions: Nitrate, Nitrite, Sulfate, Fluoride, Bromide and Chloride

Analytical methods are described in the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (EPA SW-846),

Methods for Chemical Analysis of Water and Wastes (EPA-600/4-79-020), and Standard Methods for the Examination of Water and Wastewater.

FIGURES

Groundwater Elevation Map - November 2015 Harrison Landfill

Drawn By:	LE
Checked:	AB
Approved:	TR
Date:	12/24/2015
File: See Below	

Harrison Landfill

Figure 6
Groundwater TCE and PCE Concentrations - November 2015
Harrison Road Landfill

Non Freon VOC Cumulative Mass Removed Harrison Landfill Ground Water Treatment System Figure 7

Soil Vapor Extraction and
Landfill Gas Extraction Systems
Harrison Road Landfill

Drawn By:	LE	
Checked:	AB	
Approved:	TR	
Date:	1/14/2016	
File: J-GIS-Harmon 2015-fig8 1	See Below	